Prove that $\dfrac{\mathbb{Z[i]}}{(1+4i)} \cong \mathbb{Z_{17}}$.
My attempt:
$\phi:\mathbb{Z} \rightarrow \mathbb{Z_{17}}$ be the natural (onto) ring homomorphism, sending $a \mapsto \bar{a}$. Hence by universal property of polynomial rings there exists a (onto) ring homomorphism $\phi':\mathbb{Z[X]} \rightarrow \mathbb{Z_{17}}$ such that $\phi'(x)=\bar{4}$ and $\phi'(n)=\phi(n)$ for all $n \in \mathbb{Z}$.
Clearly, $(1+x^2) \subset \operatorname{Ker}\phi' \implies$ we can obtain a (onto) ring homomorphism $\phi'':\mathbb{Z}[X]/(1+x^2) \rightarrow \mathbb{Z_{17}}$ where $\bar{x} \mapsto \bar{4}$
Since $\mathbb{Z}[X]/(1+x^2) \cong \mathbb{Z[i]}$ with $i \mapsto \bar{x}$, one can conclude there is an onto ring homomorphism $\Phi:\mathbb{Z[i]} \rightarrow \mathbb{Z_{17}}$ where $i \mapsto \bar{4}$.
$1+4i \mapsto 0$ one has $(1+4i) \subset \operatorname{Ker}\Phi$.
How can I conclude the reverse inclusion?