$\begin{align}&(x\! -\! a,f_1(x),\ldots,f_r(x))\\[.1em] =\ &(x\! -\! a,f_1(a),\ldots,f_r(a))\end{align}\ $ [Ideal evaluation = mod reduction]
I am solving Aluffi chapter 0. I am completely stuck on this question.
Let R be a commutative ring, $a \in R$, and $f_1(x),\ldots, f_r(x) \in R[x]$. Prove the equality of ideals
- $(f_1(x),\ldots,f_r(x),x - a) = (f_1(a),\ldots,f_r(a),x - a)$
- Prove the useful substitution trick $\frac{R[x]}{(f_1(x),\ldots,f_r(x), x - a)} \cong \frac{R}{(f_1(a),\ldots,f_r(a))}$