Please help me to solve this problem:
"Let $a,b,a',b',m,n,r,s$ be integers such that $m.s-n.r=1$ or $m.s-n.r=-1$, $a'=m.a+n.b$ and $b´=r.a+s.b$. Show that $I(a,b)=I(a',b')$, where $I$ is the symbol for an ideal, i.e., $I(a,b)=$ $ \left\{ na+mb;m,n \in A \right \}$, $A$ is a ring and $I \subset A$".
I know that $I(a,b)=I(b,a)$ and $I(a,b)=I(a,b-ta), t\in A$.
I also know that
$ra'=rma+rnb$
$mb'=mra+msb$
Which implies $b=mb'-ra'$.
Similarly, $nb'=nra+nsb$ and $sa'=sma+snb$ implies $a=sa'-nb'$.
Then, $I(a,b)=I(sa'-nb',mb'-ra')$, but I can't go any further.