10

It is interesting to note that any angle between 45° to 90° satisfying $1\over4$ < $p \over q$ <$1\over2$ where $ p \over q$ is of form $p = 2^n $ and $q$ is an odd number satisfying $2^{n+1} <q <2^{n+2}$ can be represented as cyclic infinite nested square roots of 2 ( Hereafter referred as $cin\sqrt2$)

Interestingly 64° falls between 45° and 90° and can be represented in radians as $16\pi \over 45$

Expansion of $2\cos\frac{16\pi}{45}$ happens as follows

$2\cos\frac{16\pi}{45} = \sqrt{2+2\cos\frac{32\pi}{45}} =\sqrt{2-2\cos\frac{13\pi}{45}} $ $=\sqrt{2- \sqrt{2+2\cos\frac{26\pi}{45}}} = \sqrt{2- \sqrt{2-2\cos\frac{19\pi}{45}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2+2\cos\frac{38\pi}{45}}}} = \sqrt{2-\sqrt{2-\sqrt{2-2\cos\frac{7\pi}{45}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+2\cos\frac{14\pi}{45}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+2\cos\frac{28\pi}{45}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2\cos\frac{17\pi}{45}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+2\cos\frac{34\pi}{45}}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2\cos\frac{11\pi}{45}}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+2\cos\frac{22\pi}{45}}}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+2\cos\frac{44\pi}{45}}}}}}}}}$ $=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2\cos\frac{\pi}{45}}}}}}}}}$....1

For the sake of simplicity last nested radical can be represented as $n\sqrt2[3-1+2-1+1-]$(nested square roots of 2 having $3-1+2-1+1-$)

$2\cos\frac{\pi}{45}$ is represented as $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2\cos\frac{16\pi}{45}}}}}$ or simply as $n\sqrt2(4+2\cos\frac{16\pi}{45})$...2

Combining 1 & 2 will be single cycle of nested radical for $2\cos\frac{16\pi}{45}$ simply represented as $n\sqrt2[3-1+2-1+1-4+]$

Now we can represent $2\cos\frac{16\pi}{45}$ as cyclic infinite nested square roots of 2 as $cin\sqrt2(3-1+2-1+1-4+)$

As $64^\circ$ is $(2^6)^\circ$ taking half angle for 6 times will give noncyclic nested square roots of 2 as $n\sqrt2(6+)$

Therefore $2\cos1°$ can be represented as $n\sqrt2(6+)cin\sqrt2[3-1+2-1+1-4+]$ and

$2\sin1°$ can be represented as $n\sqrt2(1-5+)cin\sqrt2[3-1+2-1+1-4+]$

This opens the world of nested square roots of 2 for calculating $2\cos1°$ or $2\sin1°$ without any need by taking root of cubic equation which involves imaginary component. And no need to know the value of$\pi$ to evaluate trig values as in Taylor series expansion.

Calculating single cycle itself provides result with accuracy of 7 digits after decimal point. (Six '2's in noncyclic part ten '2's in first cycle in infinite radical.)

With available scientific calculators and by programming, I have confirmed the results (for a long Post like this I feel it is difficult to incorporate those things)

My question is, is it possible to simplify above procedures by some other means?

  • Define initial angle $p_0$ (eg, $p_0=64^\circ$) and $p_{n+1}=\min(2p_n,180^\circ-2p_n)$, and let $\sigma_{n}=1$ if $p_{n+1}=2p_n$ and $-1$ otherwise. (Equivalently, $\sigma_n$ is the sign of $\cos(2p_n)$, but there's no reason to compute any cosines in this process.) Stopping when $p_m=p_0$ (in the case of $p_0=64^\circ$, then $m=12$), we have that $(\sigma_0, \sigma_1, \ldots, \sigma_{m-1})$ is the sign sequence for your cin representation of $2\cos p_0$. – Blue Dec 03 '20 at 14:37
  • 2
    A notational suggestion: Writing $[3−1+2−1+1−4+]$ as $[3^{-}1^+2^-1^+1^-4^+]$ (or even something like $[\bar{3}1\bar{2}1\bar{1}4]$ or $[\underline{3}1\underline{2}1\underline{1}4]$) would improve readability and space-efficiency. – Blue Dec 03 '20 at 14:55
  • Also, your concatenation of single- and infinite-cycle can be improved; eg, $$2\cos 1^\circ=[6|\bar{3}1\bar{2}1\bar{1}4]$$ where "$|$" separates the single cycle from the repeating one. Note: We can "peel off" four "$+$"s from the single cycle to add to before the repeating one, and remove four trailing "$+$"s from the repeating, to get $$2\cos 1^\circ = [2|4\bar{3}1\bar{2}1\bar{1}]$$ This is the sequence obtained from applying the $p_{n+1}$ and $\sigma$ algorithm in my previous comment, but stopping when $p_m$ is some earlier term, not necessarily $p_0$; which earlier term sets the "$|$". – Blue Dec 03 '20 at 15:59

4 Answers4

3

(Revising and extending some comments.)

We can generate a version of these representations thusly:

  • Let $\theta_0$ be the angle whose double-cosine we seek.
  • Let $\theta_{n+1}:=\min(2\theta_n,180^\circ-2\theta_n)$ and $\sigma_n := \operatorname{sgn}( 90^\circ-2\theta_n)$
  • Generate $\theta$- and $\sigma$-values, stopping either when $\sigma_N=0$ (the "terminating" case) or when $\theta_N=\theta_{m}$ for some $m<N$ (the "non-terminating" case).
  • Then either $\sigma(\theta_0) := [\sigma_0, \sigma_1, \ldots, \sigma_N=0|]$ (terminating) or $\sigma(\theta_0) := [\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_{m} \;|\; \sigma_{m+1}, \sigma_{m+2}, \ldots, \sigma_N ]$ (non-terminating) corresponds to a nested-radical representation of $2\cos \theta_0$: Each $\sigma_n$ gives the sign at the corresponding nesting level, as in $$2\cos \theta_0 = \sqrt{ 2 + \sigma_0 \sqrt{2 + \sigma_1 \sqrt{ 2+\sigma_2 \sqrt{\cdots} }}}$$ and the "$|$" separates a finite initial sequence from an infinitely-repeating cycle. (Caveat: The index arithmetic for my placement of the "$|$" may be off by one.)

For instance, $$\sigma(45^\circ) = [0|] \qquad \sigma(22.5^\circ) = [1\bar{0}|] \qquad \sigma(64^\circ) = [|\bar{3}1\bar{2}1\bar{1}4] \qquad \sigma(1^\circ) = [2|4\bar{3}1\bar{2}1\bar{1}]$$ where, for the sake of compactness, I'm collapsing strings of $k$ "$-1$"s to "$\bar{k}$" and strings of $k$ "$+1$"s to simply "$k$". Also, I'm writing a terminating "$0$" as either "$0$" or "$\bar{0}$", whichever contrasts with the "sign" of the preceding string; we can think of this as indicating a collapsed string of no "$+1$"s or no "$-1$"s. (BTW: Please pardon the potential confusion of the over-bar notation with repeating-decimal notation.)


The acute integer-degree angles separate into a few families of "doubled" angles (adjusted by the "min" step in the algorithm, if necessary) with related repeating cycles. For now, I've rendered the representations as Mathematica generated them, but one could make the cycles identical by augmenting the initial sequences with portions of them and manipulating appropriately; eg, $$\begin{align} \sigma(8^\circ) &= [| 3\bar{3}1\bar{2}1\bar{1}1] = [3\bar{3}1\bar{2}1\bar{1}1| 3\bar{3}1\bar{2}1\bar{1}1] = [3\bar{3}1\bar{2}1\bar{1}| 4\bar{3}1\bar{2}1\bar{1}] \\ \sigma(16^\circ) &= [| 2\bar{3}1\bar{2}1\bar{1}2] = [2\bar{3}1\bar{2}1\bar{1}2| 2\bar{3}1\bar{2}1\bar{1}2] = [2\bar{3}1\bar{2}1\bar{1}|4\bar{3}1\bar{2}1\bar{1}] \end{align}$$
so that the last versions of $\sigma(8^\circ)$ and $\sigma(16^\circ)$ have the same repeating cycle as $\sigma(1^\circ)$, $\sigma(2^\circ)$, and $\sigma(4^\circ)$. It's not necessarily clear what the "canonical cycle" should be, but I might suggest that such a cycle would begin and end with different "signs" (ie, "$p\cdots\bar{q}$" or "$\bar{p}\cdots q$", but not "$p\cdots q$" or "$\bar{p}\cdots\bar{q}$").

Each table begins with an orbit of doubled-and-adjusted angles. It happens that these are all the angles whose corresponding $\sigma$s can be written with empty initial sequences.

Note that the formula $2\cos\theta=\sqrt{2+2\cos2\theta}$ implies that (some form of) $\sigma(\min(2\theta,180^\circ-2\theta))$ is obtained from (some form of) $\sigma(\theta)$ by reducing the first digit; eg, $[2\bar{3}\cdots]\to[1\bar{3}\cdots]\to [\bar{3}\cdots]$.

$$\begin{array}{rrcrrcrrcr} \theta & \sigma(\theta) && \theta & \sigma(\theta) && \theta & \sigma(\theta) \\ \hline 4^\circ & [| 4\bar{3}1\bar{2}1\bar{1}] &\to& \phantom{1}8^\circ & [| 3\bar{3}1\bar{2}1\bar{1}1] &\to& 16^\circ & [| 2\bar{3}1\bar{2}1\bar{1}2] \\ 32^\circ & [| 1\bar{3}1\bar{2}1\bar{1}3] &\to& 64^\circ & [| \bar{3}1\bar{2}1\bar{1}4] &\to& 52^\circ & [| \bar{2}1\bar{2}1\bar{1}4\bar{1}] \\ 76^\circ & [| \bar{1}1\bar{2}1\bar{1}4\bar{2}] &\to& 28^\circ & [| 1\bar{2}1\bar{1}4\bar{3}] &\to& 56^\circ & [| \bar{2}1\bar{1}4\bar{3}1] \\ 68^\circ & [| \bar{1}1\bar{1}4\bar{3}1\bar{1}] &\to& 44^\circ & [| 1\bar{1}4\bar{3}1\bar{2}] &\to& 88^\circ & [| \bar{1}4\bar{3}1\bar{2}1] &\to& (4^\circ) \\ \hline 1^\circ & [2| 4\bar{3}1\bar{2}1\bar{1}] &\to& 2^\circ & [1| 4\bar{3}1\bar{2}1\bar{1}] &\to& (\phantom{1}4^\circ) \\ \hline 7^\circ & [2| 1\bar{2}1\bar{1}4\bar{3}] &\to& 14^\circ & [1| 1\bar{2}1\bar{1}4\bar{3}] &\to& (28^\circ) \\ \hline 11^\circ & [2| 1\bar{1}4\bar{3}1\bar{2}] &\to& 22^\circ & [1| 1\bar{1}4\bar{3}1\bar{2}] &\to& (44^\circ) \\ \hline 13^\circ & [2| \bar{2}1\bar{2}1\bar{1}4\bar{1}] &\to& 26^\circ & [1| \bar{2}1\bar{2}1\bar{1}4\bar{1}] &\to& (52^\circ) \\ \hline 17^\circ & [2| \bar{1}1\bar{1}4\bar{3}1\bar{1}] &\to& 34^\circ & [1| \bar{1}1\bar{1}4\bar{3}1\bar{1}] &\to& (68^\circ) \\ \hline 19^\circ & [2| \bar{1}1\bar{2}1\bar{1}4\bar{2}] &\to& 38^\circ & [1| \bar{1}1\bar{2}1\bar{1}4\bar{2}] &\to& (76^\circ) \\ \hline 23^\circ & [1\bar{1}| \bar{1}4\bar{3}1\bar{2}1] &\to& 46^\circ & [\bar{1}| \bar{1}4\bar{3}1\bar{2}1] &\to& (88^\circ) \\ \hline 29^\circ & [1\bar{1}| \bar{3}1\bar{2}1\bar{1}4] &\to& 58^\circ & [\bar{1}| \bar{3}1\bar{2}1\bar{1}4] &\to& (64^\circ) \\ \hline 31^\circ & [1\bar{1}| \bar{2}1\bar{1}4\bar{3}1] &\to& 62^\circ & [\bar{1}| \bar{2}1\bar{1}4\bar{3}1] &\to& (56^\circ) \\ \hline 37^\circ & [1\bar{1}| 1\bar{3}1\bar{2}1\bar{1}3] &\to& 74^\circ & [\bar{1}| 1\bar{3}1\bar{2}1\bar{1}3] &\to& (32^\circ) \\ \hline 41^\circ & [1\bar{1}| 2\bar{3}1\bar{2}1\bar{1}2] &\to& 82^\circ & [\bar{1}| 2\bar{3}1\bar{2}1\bar{1}2] &\to& (16^\circ) \\ \hline 43^\circ & [1\bar{1}| 3\bar{3}1\bar{2}1\bar{1}1] &\to& 86^\circ & [\bar{1}| 3\bar{3}1\bar{2}1\bar{1}1] &\to& (\phantom{1}8^\circ) \\ \hline 47^\circ & [\bar{2}| 3\bar{3}1\bar{2}1\bar{1}1] &\to& (86^\circ) \\ \hline 49^\circ & [\bar{2}| 2\bar{3}1\bar{2}1\bar{1}2] &\to& (82^\circ) \\ \hline 53^\circ & [\bar{2}| 1\bar{3}1\bar{2}1\bar{1}3] &\to& (74^\circ) \\ \hline 59^\circ & [\bar{2}| \bar{2}1\bar{1}4\bar{3}1] &\to& (62^\circ) \\ \hline 61^\circ & [\bar{2}| \bar{3}1\bar{2}1\bar{1}4] &\to& (58^\circ) \\ \hline 67^\circ & [\bar{2}| \bar{1}4\bar{3}1\bar{2}1] &\to& (46^\circ) \\ \hline 71^\circ & [\bar{1}1| \bar{1}1\bar{2}1\bar{1}4\bar{2}] &\to& (38^\circ) \\ \hline 73^\circ & [\bar{1}1| \bar{1}1\bar{1}4\bar{3}1\bar{1}] &\to& (34^\circ) \\ \hline 77^\circ & [\bar{1}1| \bar{2}1\bar{2}1\bar{1}4\bar{1}] &\to& (26^\circ) \\ \hline 79^\circ & [\bar{1}1| 1\bar{1}4\bar{3}1\bar{2}] &\to& (22^\circ) \\ \hline 83^\circ & [\bar{1}1| 1\bar{2}1\bar{1}4\bar{3}] &\to& (14^\circ) \\ \hline 89^\circ & [\bar{1}1| 4\bar{3}1\bar{2}1\bar{1}] &\to& (\phantom{1}2^\circ) \\ \hline \end{array}$$

$$\begin{array}{rrcrrcrrcrrcr} \theta & \sigma(\theta) && \theta & \sigma(\theta) && \theta & \sigma(\theta) && \theta & \sigma(\theta) \\ \hline 12^\circ & [| 2\bar{2}] &\to& 24^\circ & [| 1\bar{2}1] &\to& 48^\circ & [| \bar{2}2] &\to& 84^\circ & [| \bar{1}2\bar{1}] &\to& (12^\circ) \\ \hline 3^\circ & [2| 2\bar{2}] &\to& 6^\circ & [1| 2\bar{2}] &\to& (12^\circ) \\ \hline 21^\circ & [2| \bar{1}2\bar{1}] &\to& 42^\circ & [1| \bar{1}2\bar{1}] &\to& (84^\circ) \\ \hline 33^\circ & [1\bar{1}| \bar{2}2] &\to& 66^\circ & [\bar{1}| \bar{2}2] &\to& (48^\circ) \\ \hline 39^\circ & [1\bar{1}| 1\bar{2}1] &\to& 78^\circ & [\bar{1}| 1\bar{2}1] &\to& (24^\circ) \\ \hline 51^\circ & [\bar{2}| 1\bar{2}1] &\to& (78^\circ) \\ \hline 55^\circ & [\bar{2}| 1\bar{1}1] &\to& (70^\circ) \\ \hline 57^\circ & [\bar{2}| \bar{2}2] &\to& (66^\circ) \\ \hline 69^\circ & [\bar{1}1| \bar{1}2\bar{1}] &\to& (42^\circ) \\ \hline 87^\circ & [\bar{1}1| 2\bar{2}] &\to& (\phantom{1}6^\circ) \\ \hline \end{array}$$

$$\begin{array}{rrcrrcrrcr} \theta & \sigma(\theta) && \theta & \sigma(\theta) && \theta & \sigma(\theta) \\ \hline 20^\circ & [| 2\bar{1}] &\to& 40^\circ & [| 1\bar{1}1] &\to& 80^\circ & [| \bar{1}2] &\to& (20^\circ) \\ \hline 5^\circ & [2| 2\bar{1}] &\to& 10^\circ & [1| 2\bar{1}] &\to& (20^\circ) \\ \hline 25^\circ & [1\bar{1}| \bar{1}2] &\to& 50^\circ & [\bar{1}| \bar{1}2] &\to& (80^\circ) \\ \hline 35^\circ & [1\bar{1}| 1\bar{1}1] &\to& 70^\circ & [\bar{1}| 1\bar{1}1] &\to& (40^\circ) \\ \hline 65^\circ & [\bar{2}| \bar{1}2] &\to& (50^\circ) \\ \hline 85^\circ & [\bar{1}1| 2\bar{1}] &\to& (10^\circ) \\ \hline \end{array}$$

$$\begin{array}{rrcrrcr} \theta & \sigma(\theta) && \theta & \sigma(\theta) \\ \hline 36^\circ & [| 1\bar{1}] &\to& 72^\circ & [| \bar{1}1] &\to& (36^\circ) \\ \hline 9^\circ & [2| 1\bar{1}] &\to& 18^\circ & [1| 1\bar{1}] &\to& (36^\circ) \\ \hline 27^\circ & [1\bar{1}| \bar{1}1] &\to& 54^\circ & [\bar{1}| \bar{1}1] &\to& (72^\circ) \\ \hline 63^\circ & [\bar{2}| \bar{1}1] &\to& (54^\circ) \\ \hline 81^\circ & [\bar{1}1| 1\bar{1}] &\to& (18^\circ) \\ \hline \end{array}$$

$$\begin{array}{rrcrrcr} \theta & \sigma(\theta) && \theta & \sigma(\theta) \\ \hline 60^\circ & [| \bar{1}] &\to& (60^\circ) \\ \hline 15^\circ & [2| \bar{1}] &\to& 30^\circ & [1| \bar{1}] &\to& (60^\circ) \\ \hline 75^\circ & [\bar{1}1| \bar{1}] &\to& (30^\circ) \\ \hline \end{array}$$

$$\begin{array}{rr} \theta & \sigma(\theta) \\ \hline 45^\circ & [0|] \\ \hline \end{array}$$

Blue
  • 75,673
  • 1
    Amazing work sir!. Even though I have done it, you have simplified it a lot. Thank you very much. Actually I was finding difficulty in presenting all the integer angles in this post as it becomes too lengthy. You have made it. All odd numbers was denominator (angle in the radian form) can be represented as cyclic infinite nested square roots of 2. – Sivakumar Krishnamoorthi Dec 04 '20 at 10:59
2

I have found and proved the following theorem on July, 2021.

[Theorem 1] For any rational number $\frac{n}{m}$, both $\cos \left(\frac{n}{m}\pi\right)$ and $\sin \left(\frac{n}{m}\pi\right)$ can be represented as cyclic infinite nested square roots of $2$, of which the cyclic period is less than $\frac{m-1}{2}$.

[Example 1]

$ 2 \cos \left(\frac{\pi }{3}\right)=\sqrt{2-2 \cos \left(\frac{\pi }{3}\right)} $

$ 2 \cos \left(\frac{\pi }{5}\right)=\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{5}\right)}} $

$ 2 \cos \left(\frac{\pi }{7}\right)=\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{7}\right)}}} $

$ 2 \cos \left(\frac{\pi }{9}\right)=\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{9}\right)}}} $

$ 2 \cos \left(\frac{\pi }{11}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{11}\right)}}}}} $

$ 2 \cos \left(\frac{\pi }{13}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{13}\right)}}}}}} $

$ 2 \cos \left(\frac{\pi }{15}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{15}\right)}}}} $

$ 2 \cos \left(\frac{\pi }{17}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{17}\right)}}}} $

$ 2 \cos \left(\frac{\pi }{19}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{2 \pi }{19}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+2 \cos \left(\frac{2 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{3 \pi }{19}\right)=\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{3 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{4 \pi }{19}\right)=\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{4 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{5 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{5 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{6 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+2 \cos \left(\frac{6 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{7 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{7 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{8 \pi }{19}\right)=\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2 \cos \left(\frac{8 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{9 \pi }{19}\right)=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{9 \pi }{19}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{\pi }{21}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{21}\right)}}}}}} $

$ 2 \cos \left(\frac{\pi }{23}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{23}\right)}}}}}}}}}}} $

$ 2 \cos \left(\frac{\pi }{25}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{25}\right)}}}}}}}}}} $

$ 2 \cos \left(\frac{\pi }{27}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{27}\right)}}}}}}}}} $

$ 2 \cos \left(\frac{\pi }{29}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{29}\right)}}}}}}}}}}}}}} $

$ 2 \cos \left(\frac{\pi }{31}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{31}\right)}}}}} $

$ 2 \cos \left(\frac{\pi }{33}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{33}\right)}}}}} $

$ 2 \cos \left(\frac{\pi }{35}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{35}\right)}}}}}}}}}}}} $

[Example 2]

$ 2 \cos \left(\frac{355 \pi }{113}\right)=-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{355 \pi }{113}\right)}}}}}}}}}}}}}} $

$ 2 \cos \left(\frac{17 \pi }{65537}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{17 \pi }{65537}\right)}}}}}}}}}}}}}}}} $

$2\cos(\frac{\pi}{1729})=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\ \sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\ \sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\ \sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2\cos(\frac{\pi}{1729})}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$

$2\cos(\frac{\pi}{641})=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\ \sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\ \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2\cos(\frac{\pi}{641})}}}}}}}}}}}}}}}}}}}\ }}}}}}}}}}}}}}$

[Example 3]

$ 2 \cos \left(\frac{520 \pi }{1314}\right)=\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{520 \pi }{1314}\right)}}}}}}}}}}}}}}}}}} $

$ 2 \sin \left(\frac{520 \pi }{1314}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{520 \pi }{1314}\right)}}}}}}}}}}}}}}}}}} $

$ 2 \cos \left(\frac{1314 \pi }{520}\right)=-\sqrt{2-\sqrt{2+2 \cos \left(\frac{7 \pi }{65}\right)}} $

$ 2 \sin \left(\frac{1314 \pi }{520}\right)=\sqrt{2+\sqrt{2+2 \cos \left(\frac{7 \pi }{65}\right)}} $

$ 2 \cos \left(\frac{7 \pi }{65}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{7 \pi }{65}\right)}}}}}} $

(Note: In Chinese, 520 means "I Love you". 1314 means "Forever".)

I found the above Theorem 1 and Examples by using my following Theorem 2.

[Theorem 2] Let $p_i$ be odd primes, $k_i$ be positive integers. Then

(1) for any integer $h>1$

$\\2^{2 \prod _{i=1}^h \frac{p_i-1}{2} p_i^{k_i-1}}-1\equiv 0 \left(mod \prod _{i=1}^h p_i^{k_i}\right)$

(2) for $p_1\equiv \pm 1 (mod\ 8)$

$\\2^{\frac{p_1-1}{2} p_1^{k_1-1}}-1\equiv 0 \left(mod\ p_1^{k_1}\right)$

(3) for $p_1\equiv \pm 3 (mod\ 8)$

$\\2^{\frac{p_1-1}{2} p_1^{k_1-1}}+1\equiv 0 \left(mod\ p_1^{k_1}\right)$

On the other hand, we have

[Theorem 3]

Any cyclic infinite nested square roots of 2 can be represented as $\cos \left(q\pi\right)$ and $\sin \left(q\pi\right)$, where q is rational number.

For more detail, please refer to my below website: http://eslpower.org http://eslpower.org/Notebook.htm

Chen Shuwen
  • 176
  • 5
  • 2
    Excellent. You have got it right. This I have found approximately 15 months ago. I have published very few only in this forum. Being not a mathematician or math graduate, I don't know where to publish. But this is forum is excellent. I love it. please go through all cyclic infinite nested radicals published in this forum by me. Thank you with my humbleness – Sivakumar Krishnamoorthi Aug 27 '21 at 15:10
  • Thank you for your kind advice. I found these interesting results when I studied the Prouhet-Tarry-Escott problem in July 2021. When I started to writie a paper on this subject, I consulted various literature and found your post here. I will summarize the previous achievements of you and others in my thesis. Theorem 2 mentioned above can have a better improvement, which I will update later. – Chen Shuwen Sep 05 '21 at 03:40
  • For nested square roots of n>=3, I have found some new result, please see https://math.stackexchange.com/a/4233146/954936 – Chen Shuwen Sep 10 '21 at 12:32
1

Other similar results: https://math.stackexchange.com/a/4248080/954936

Examples:

$ 4 \cos \left(\frac{4 \pi }{9}\right)+1=\sqrt{11-2 \sqrt{11+2 \sqrt{11-2 \left(4 \cos \left(\frac{4 \pi }{9}\right)+1\right)}}} $

$ 4 \cos \left(\frac{2 \pi }{9}\right)+1=\sqrt{11+2 \sqrt{11-2 \sqrt{11-2 \left(4 \cos \left(\frac{2 \pi }{9}\right)+1\right)}}} $

$ 4 \cos \left(\frac{\pi }{9}\right)-1=\sqrt{11-2 \sqrt{11-2 \sqrt{11+2 \left(4 \cos \left(\frac{\pi }{9}\right)-1\right)}}} $

$ 4 \cos \left(\frac{\pi }{4}\right)+1=\sqrt{11+2 \sqrt{11-2 \left(4 \cos \left(\frac{\pi }{4}\right)+1\right)}} $

$ 4 \cos \left(\frac{\pi }{4}\right)-1=\sqrt{11-2 \sqrt{11+2 \left(4 \cos \left(\frac{\pi }{4}\right)-1\right)}} $

Chen Shuwen
  • 176
  • 5
  • 1
    It is impressive. But I am not able to get it. How did you derive? Can you please explain in this forum? – Sivakumar Krishnamoorthi Sep 14 '21 at 06:13
  • To get the results quickly, my current method uses Mathematica. I'll explain the detailed mathematical method later. You may also refer to this article https://math.stackexchange.com/questions/1596824/ – Chen Shuwen Sep 19 '21 at 11:46
0

For nested square roots of n>=3, I have found some new result

$ \sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+\left(2 \cos \left(\frac{\pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{8 \pi }{15}\right)\right)}}}}=2 \cos \left(\frac{\pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{8 \pi }{15}\right) $

$ \sqrt{5+\sqrt{5-\sqrt{5+\sqrt{5+\left(2 \cos \left(\frac{4 \pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{7 \pi }{15}\right)\right)}}}}=2 \cos \left(\frac{4 \pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{7 \pi }{15}\right) $

$ \sqrt{5-\sqrt{5+\sqrt{5+\sqrt{5+\left(2 \cos \left(\frac{2 \pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{11 \pi }{15}\right)\right)}}}}=2 \cos \left(\frac{2 \pi }{15}\right)+2 \cos \left(\frac{5 \pi }{15}\right)+2 \cos \left(\frac{11 \pi }{15}\right) $

$ \sqrt{5+\sqrt{5+\sqrt{5+\sqrt{5-\left(2 \cos \left(\frac{\pi }{15}\right)+2 \cos \left(\frac{6 \pi }{15}\right)+2 \cos \left(\frac{7 \pi }{15}\right)\right)}}}}=2 \cos \left(\frac{\pi }{15}\right)+2 \cos \left(\frac{6 \pi }{15}\right)+2 \cos \left(\frac{7 \pi }{15}\right) $

please see math.stackexchange.com/a/4233146/954936

Chen Shuwen
  • 176
  • 5