I have found and proved the following theorem on July, 2021.
[Theorem 1]
For any rational number $\frac{n}{m}$, both $\cos \left(\frac{n}{m}\pi\right)$ and $\sin \left(\frac{n}{m}\pi\right)$ can be represented as cyclic infinite nested square roots of $2$, of which the cyclic period is less than $\frac{m-1}{2}$.
[Example 1]
$ 2 \cos \left(\frac{\pi }{3}\right)=\sqrt{2-2 \cos \left(\frac{\pi }{3}\right)} $
$ 2 \cos \left(\frac{\pi }{5}\right)=\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{5}\right)}} $
$ 2 \cos \left(\frac{\pi }{7}\right)=\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{7}\right)}}} $
$ 2 \cos \left(\frac{\pi }{9}\right)=\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{9}\right)}}} $
$ 2 \cos \left(\frac{\pi }{11}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{11}\right)}}}}} $
$ 2 \cos \left(\frac{\pi }{13}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{13}\right)}}}}}} $
$ 2 \cos \left(\frac{\pi }{15}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{15}\right)}}}} $
$ 2 \cos \left(\frac{\pi }{17}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{17}\right)}}}} $
$ 2 \cos \left(\frac{\pi }{19}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{2 \pi }{19}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+2 \cos \left(\frac{2 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{3 \pi }{19}\right)=\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{3 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{4 \pi }{19}\right)=\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{4 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{5 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{5 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{6 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+2 \cos \left(\frac{6 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{7 \pi }{19}\right)=\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{7 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{8 \pi }{19}\right)=\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+2 \cos \left(\frac{8 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{9 \pi }{19}\right)=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{9 \pi }{19}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{\pi }{21}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{21}\right)}}}}}} $
$ 2 \cos \left(\frac{\pi }{23}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{23}\right)}}}}}}}}}}} $
$ 2 \cos \left(\frac{\pi }{25}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{25}\right)}}}}}}}}}} $
$ 2 \cos \left(\frac{\pi }{27}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{27}\right)}}}}}}}}} $
$ 2 \cos \left(\frac{\pi }{29}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{29}\right)}}}}}}}}}}}}}} $
$ 2 \cos \left(\frac{\pi }{31}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{31}\right)}}}}} $
$ 2 \cos \left(\frac{\pi }{33}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{33}\right)}}}}} $
$ 2 \cos \left(\frac{\pi }{35}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{35}\right)}}}}}}}}}}}} $
[Example 2]
$ 2 \cos \left(\frac{355 \pi }{113}\right)=-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{355 \pi }{113}\right)}}}}}}}}}}}}}} $
$ 2 \cos \left(\frac{17 \pi }{65537}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{17 \pi }{65537}\right)}}}}}}}}}}}}}}}} $
$2\cos(\frac{\pi}{1729})=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\
\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\
\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\
\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2\cos(\frac{\pi}{1729})}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
$2\cos(\frac{\pi}{641})=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\
\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\
\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\
\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2\cos(\frac{\pi}{641})}}}}}}}}}}}}}}}}}}}\
}}}}}}}}}}}}}}$
[Example 3]
$ 2 \cos \left(\frac{520 \pi }{1314}\right)=\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{520 \pi }{1314}\right)}}}}}}}}}}}}}}}}}} $
$ 2 \sin \left(\frac{520 \pi }{1314}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2+2 \cos \left(\frac{520 \pi }{1314}\right)}}}}}}}}}}}}}}}}}} $
$ 2 \cos \left(\frac{1314 \pi }{520}\right)=-\sqrt{2-\sqrt{2+2 \cos \left(\frac{7 \pi }{65}\right)}} $
$ 2 \sin \left(\frac{1314 \pi }{520}\right)=\sqrt{2+\sqrt{2+2 \cos \left(\frac{7 \pi }{65}\right)}} $
$ 2 \cos \left(\frac{7 \pi }{65}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2+\sqrt{2-\sqrt{2-2 \cos \left(\frac{7 \pi }{65}\right)}}}}}} $
(Note: In Chinese, 520 means "I Love you". 1314 means "Forever".)
I found the above Theorem 1 and Examples by using my following Theorem 2.
[Theorem 2]
Let $p_i$ be odd primes, $k_i$ be positive integers. Then
(1) for any integer $h>1$
$\\2^{2 \prod _{i=1}^h \frac{p_i-1}{2} p_i^{k_i-1}}-1\equiv 0 \left(mod \prod _{i=1}^h p_i^{k_i}\right)$
(2) for $p_1\equiv \pm 1 (mod\ 8)$
$\\2^{\frac{p_1-1}{2} p_1^{k_1-1}}-1\equiv 0 \left(mod\ p_1^{k_1}\right)$
(3) for $p_1\equiv \pm 3 (mod\ 8)$
$\\2^{\frac{p_1-1}{2} p_1^{k_1-1}}+1\equiv 0 \left(mod\ p_1^{k_1}\right)$
On the other hand, we have
[Theorem 3]
Any cyclic infinite nested square roots of 2 can be represented as $\cos \left(q\pi\right)$ and $\sin \left(q\pi\right)$, where q is rational number.
For more detail, please refer to my below website:
http://eslpower.org
http://eslpower.org/Notebook.htm