Evaluate $\det{A}$, where $A$ is the $n \times n$ matrix defined by $a_{ij} = \min\{i, j\}$, for all $i,j\in \{1, \ldots, n\}$.
$$A_2 \begin{pmatrix} 1& 1\\ 1& 2 \end{pmatrix}; A_3 = \begin{pmatrix} 1& 1& 1\\ 1& 2& 2\\ 1& 2& 3 \end{pmatrix}; A_4 = \begin{pmatrix} 1& 1& 1& 1\\ 1& 2& 2& 2\\ 1& 2& 3& 3\\ 1& 2& 3& 4 \end{pmatrix}; A_5 = \begin{pmatrix} 1& 1& 1& 1& 1\\ 1& 2& 2& 2& 2\\ 1& 2& 3& 3& 3\\ 1& 2& 3& 4& 4\\ 1& 2& 3& 4& 5 \end{pmatrix}$$
$$A_6 = \begin{pmatrix} 1& 1& 1& 1& 1& 1\\ 1& 2& 2& 2& 2& 2\\ 1& 2& 3& 3& 3& 3\\ 1& 2& 3& 4& 4& 4\\ 1& 2& 3& 4& 5& 5\\ 1& 2& 3& 4& 5& 6 \end{pmatrix}; A_7 = \begin{pmatrix} 1& 1& 1& 1& 1& 1& 1\\ 1& 2& 2& 2& 2& 2& 2\\ 1& 2& 3& 3& 3& 3& 3\\ 1& 2& 3& 4& 4& 4& 4\\ 1& 2& 3& 4& 5& 5& 5\\ 1& 2& 3& 4& 5& 6& 6\\ 1& 2& 3& 4& 5& 6& 7 \end{pmatrix} $$