It is well known that $\sum\limits_{n=0}^\infty \frac{x^n}{(n!)} = e^x$.
What is $\sum\limits_{n=0}^\infty \frac{x^n}{(n!)^2}$ ?
It is well known that $\sum\limits_{n=0}^\infty \frac{x^n}{(n!)} = e^x$.
What is $\sum\limits_{n=0}^\infty \frac{x^n}{(n!)^2}$ ?
$$\sum\limits_{n=0}^\infty \frac{x^n}{(n!)^2}=I_0\left(2 \sqrt{x}\right)$$ where appears the modified Bessel function of the first kind.