Consider the stochastic process $(X_{t})_{t\in \mathbb R_{+}}$ on a filtered probability space $(\Omega,\mathcal{F},(\mathcal{F}_{t}^{X})_{t\in \mathbb R_{+}},\mathbb P)$ where $\mathcal{F}_{t}^{X}=\sigma (X_{s}:0\leq s\leq t) $. Let $T$ be a $(\mathcal{F}_{t}^{X})_{t\in \mathbb R_{+}}-$stopping time such that there is a pair $\omega, \overline{\omega} \in \Omega$ where:
$ X_{t}(\omega)=X_{t}(\overline{\omega})$ for all $t \in [0,T(\omega)]\cap [0,\infty)$
Then show that $T(\omega) = T(\overline{\omega})$
My failed attempt:
Perhaps a contradiction may help. Assume that $T(\omega) < T(\overline{\omega})$, then $\overline{\omega}\notin \{T\leq t\} \in \mathcal{F}_{t}^{X}$ for any $t \leq T(\omega)$, in particular:
$\overline{\omega}\notin \{T\leq T(\omega)\} \in \mathcal{F}_{T(\omega)}^{X}$ but how will this help me? Any ideas/tips?