I think saz's proof is wrong in the last step when he claims $T\cdot I_{\{T\le t\}}$ is $\mathcal{F}_t$ measurable by Lemma 2. Also, his proof only works for real valued stochastic process. In fact, Galmarino Test works for process taking value in any measurable space $(E,\mathcal{E})$.
Galmarino Test: Let $(X_t)_{t\ge0}$ be a $(E,\mathcal{E})$ valued canonical process defined on the canonical probability space $(\Omega,\mathcal{F},P)$, that is, $\Omega=E^{[0,+\infty)}$, $\mathcal{F}=\mathcal{E}^{[0,+\infty)}$ and $X_t$ is the coordinate map on $E^{[0,+\infty)}$: for any $t\ge0$: $X_t(\omega)=\omega(t)\;\forall \omega\in \Omega$. Let $\mathcal{F}_t=\sigma(X_s,0\le s\le t)$ for $t\ge0$ be the natural filtration. Suppose a map $T$ from $\Omega$ to $[0,+\infty]$ is a random time. Then the following two statements are equivalent:
(a) $T$ is a $\mathcal{F}_t$ stopping time
(b) For any $\omega,\omega'\in\Omega$ and any $t\ge0$, $T(\omega)\le t$ and $X_s(\omega)=X_s(\omega')\forall s\le t$ imply $T(\omega)=T(\omega')$.
Proof: For each $t\ge0$, define $a_t$ to be a map from $\Omega$ to $\Omega$ such that for any $\omega\in\Omega(=E^{[0,+\infty)}$), $a_t(\omega)(s)=\omega(s\wedge t)$ for $s\ge0$.
Loosely speaking, $a_t(\omega)$ keeps the part of $\omega$ before $t$ and reset part of $\omega$ after $t$ to be $\omega(t)$. By the definition of $a_t$, for any $\omega,\omega'\in\Omega$, $a_t(\omega)=a_t(\omega')$ is equivalent to $\omega(s)=\omega'(s)\forall s\le t$, which is also equivalent to $X_s(\omega)=X_s(\omega)\forall s\le t$ (because $X_s$ is the coordinate map). Thus statement (b) is equivalent to the follow statement:
(b') For any $\omega,\omega'\in\Omega$ and any $t\ge0$, $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$ imply $T(\omega)=T(\omega')$.
Claim 1: (b') is equivalent to the following statement:
(b'') For any $\omega,\omega'\in\Omega$ and any $t\ge0$, $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$ imply $T(\omega')\le t$.
Let's first show (b') implies (b''). Suppose (b') holds. Let $\omega,\omega'\in\Omega$ and $t\ge0$ such that $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$. By (b'), $T(\omega')=T(\omega)$. Since we already have $T(\omega)\le t$ so $T(\omega')\le t$.
Next, we show (b'') implies (b'). Suppose (b'') is true. Let $\omega,\omega'\in\Omega$ and $t\ge0$ such that $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$. We need to show $T(\omega)=T(\omega')$.
Define $r=T(\omega)$ so $r\le t$ (becauase $T(\omega)\le t$). Now we have $$T(\omega)\le r\quad (1)\quad \mbox{ and }a_r(\omega)=a_r(\omega')\quad (2)$$
(1) is simply because of the definition of $r$. (2) is because $a_t(\omega)=a_t(\omega')$, that is, $\omega(s)=\omega'(s)\forall s\le t$. Since $r\le t$, so of course we also have $\omega(s)=\omega'(s)\forall s\le r$, which is (2). By (1)(2) and using (b''), we have $T(\omega')\le r$ which is $$T(\omega')\le T(\omega)\quad (*)$$
Define $r'=T(\omega')$. So $r'=T(\omega')\le T(\omega)\le t$. Similarly, we have $$T(\omega')\le r'\quad (3)\quad \mbox{ and }a_{r'}(\omega)=a_{r'}(\omega')\quad (4)$$
By (3)(4) and using (b'') (we need to exchange the role of $\omega$ and $\omega'$ when using (b'')), we have $T(\omega)\le r'$, which is $T(\omega)\le T(\omega')$. This combined with (*) shows $T(\omega)=T(\omega')$.
Claim 2: $a_t$ is $\mathcal{F}_t/\mathcal{F}$ measurable for each $t\ge0$.
Recall $X_t$ is the coordinate map so $\mathcal{F}=\mathcal{E}^{[0,+\infty)}=\sigma(X_t,t\ge0)$. Now let's fix $t\ge0$. $a_t$ takes value in $\Omega=E^{[0,+\infty)}$ so to show $a_t$ is $\mathcal{F}_t/\mathcal{E}^{[0,+\infty)}$ measurable, we only need to show each coordinate of its coordinate is $\mathcal{F}_t/\mathcal{E}$ measurable, that is, to show $X_s\circ a_t$ is $\mathcal{F}_t/\mathcal{E}$ measurable for each $s\ge0$.
For each $s\ge0$, $X_s\circ a_t(\omega)=a_t(\omega)(s)=\omega(s\wedge t)=X_{s\wedge t}(\omega)$ is $\mathcal{F}_t/\mathcal{E}$ measurable because $X_{s\wedge t}$ is $\mathcal{F}_{s\wedge t}/\mathcal{E}$ measurable and $\mathcal{F}_{s\wedge t}\subseteq\mathcal{F}_t$. Proof of claim 2 is done.
Claim 3: $\mathcal{F}_t=\{a_t^{-1}(A)|A\in\mathcal{F}\}$ for each $t\ge0$.
For any $A\in\mathcal{F}$, $a_t^{-1}(A)\in\mathcal{F}_t$ (claim 2), so $\{a_t^{-1}(A)|A\in\mathcal{F}\}\subseteq\mathcal{F}_t$. Now we only need to show $\mathcal{F}_t\subseteq\{a_t^{-1}(A)|A\in\mathcal{F}\}$. For any $B\in\mathcal{F}_t=\sigma(X_s,s\le t)$, there exist $t'\in [0,t]$ and $S\in\mathcal{E}$ such that $B=X_{t'}^{-1}(S)$. Now for any $\omega\in\Omega$, $X_{t'}(\omega)=\omega(t')=\omega(t'\wedge t)=a_t(\omega)(t')=X_{t'}(a_t(\omega))$. This shows $X_{t'}=X_{t'}\circ a_t$. Thus $B=X_{t'}^{-1}(S)=(X_{t'}\circ a_t)^{-1}(S)=a_t^{-1}(X_{t'}^{-1}(S))\in \{a_t^{-1}(A)|A\in\mathcal{F}\}$ where the last step is because $X_{t'}$ is $\mathcal{F}_{t'}/\mathcal{E}$ measurable so $X_{t'}^{-1}(S)\in\mathcal{F}_{t'}\subseteq\mathcal{F}$. Therefore $\mathcal{F}_t\subseteq\{a_t^{-1}(A)|A\in\mathcal{F}\}$. Claim 3 is proved.
Now we are ready to prove the theorem. Since (b) is equivalent to (b') which is also equivalent to (b''), now we only need to show (a) and (b'') are equivalent.
Step 1: Show (a) implies (b''). Suppose (a) is true. Let $\omega,\omega'\in\Omega$ and $t\ge0$ such that $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$. We need to show $T(\omega')\le t$.
Since $T(\omega)\le t$ and by (a) and claim 3, $\omega\in\{T\le t\}\in\mathcal{F}_t=\{a_t^{-1}(A)|A\in\mathcal{F}\}$. Thus there exists $S\in\mathcal{F}$ such that $\{T\le t\}=a_t^{-1}(S)$. So $\omega\in a_t^{-1}(S)$. Thus $a_t(\omega)\in A$. Because $a_t(\omega)=a_t(\omega')$, $a_t(\omega')\in A$ which implies that $\omega'\in a_t^{-1}(A)=\{T\le t\}$ so $T(\omega')\le t$.
Step 2: Show (b'') implies (a). Suppose (b'') is true. We need to show $\{T\le t\}\in\mathcal{F}_t$ for any $t\ge0$. Now fix $t\ge0$. We claim $\{T\le t\}=a_t^{-1}(\{T\le t\})$.
To show this claim, we first show $\{T\le t\}\subseteq a_t^{-1}(\{T\le t\})$. For any $\omega\in\{T\le t\}$. So $T(\omega)\le t$. Define $\omega'=a_t(\omega)$ so $a_t(\omega')=a_t(a_t(\omega))=a_t(\omega)$ where in the last step we used the fact $a_t\circ a_t$ by the definition of $a_t$. Now we have $T(\omega)\le t$ and $a_t(\omega)=a_t(\omega')$ and thus by (b'') $T(\omega')\le t$ so $T(a_t(\omega))\le t$, thus $a_t(\omega)\in \{T\le t\}$ hence $\omega\in a_t^{-1}(\{T\le t\})$. Therefore $\{T\le t\}\subseteq a_t^{-1}(\{T\le t\})$ is proved. Next, we show $a_t^{-1}(\{T\le t\})\subseteq\{T\le t\}$. For any $\omega'\in a_t^{-1}(\{T\le t\})$, $a_t(\omega')\in\{T\le t\}$ thus $T(a_t(\omega'))\le t$. Define $\omega=a_t(\omega')$ so $T(\omega)\le t$ and $a_t(\omega)=a_t(a_t(\omega'))=a_t(\omega')$. By (b''), $T(\omega')\le t$. Hence $\omega'\in\{T\le t\}$. $a_t^{-1}(\{T\le t\})\subseteq\{T\le t\}$ is proved.
Therefore, we have proved $\{T\le t\}=a_t^{-1}(\{T\le t\})$. Now it's clear $\{T\le t\}=a_t^{-1}(\{T\le t\})\in\mathcal{F}_t$ because $\{T\le t\}\in\mathcal{F}$ ($T$ is a random time) and $a_t$ is $\mathcal{F}_t/\mathcal{F}$ measurable (claim 2).