Introduction
As is usually the case with Fractional Derivatives, there is also not "the Fractional Derivative". They differ depending on the method of derivation used and the type of Differential Operator. I'll use $\operatorname{D_{x}^{\alpha}}$ as a differential operator given by $\operatorname{D_{x}^{\alpha}} = \frac{\operatorname{d}^{\alpha}}{\operatorname{d}x^{\alpha}}$. Note: I'll also use $\Gamma\left( \cdot \right)$ as the Complete Gamma Function.
Calculation
"Euler Method"
We can do this even mor generaly for $\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right]$.
Leonhard Euler came up with a nice method for some Fractional Derivatives (see Euler's Approach). He has sorted the derivatives of the function by order and is trying to find a pattern in it. He then tried to transfer this pattern from integer orders to fractional ones, which I always affectionately call the "Euler method":
However, the whole thing here also depends on the sign of $c$. In the following i'll assume that the $c$ that i'll is given by $c \in \mathbb{R}^{+}$.
$$
\begin{align*}
\operatorname{D_{x}^{0}}\left[ \left( a \cdot x + b \right)^{c} \right] &= \left( a \cdot x + b \right)^{c}\\
\operatorname{D_{x}^{1}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a \cdot c \cdot \left( a \cdot x + b \right)^{c - 1}\\
\operatorname{D_{x}^{2}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{2} \cdot c \cdot \left( c - 1 \right) \cdot \left( a \cdot x + b \right)^{c - 2}\\
\operatorname{D_{x}^{3}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{3} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( a \cdot x + b \right)^{c - 3}\\
\operatorname{D_{x}^{4}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{4} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( c - 3 \right) \cdot \left( a \cdot x + b \right)^{c - 4}\\
\operatorname{D_{x}^{5}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{5} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( c - 3 \right) \cdot \left( c - 4 \right) \cdot \left( a \cdot x + b \right)^{c - 5}\\
&\cdots\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{n} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdots \left( c - n + 1 \right) \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{n} \cdot \frac{c!}{\left( c - n \right)!} \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{\alpha} \cdot \frac{\Gamma\left( c + 1 \right)}{\Gamma\left( c - \alpha + 1 \right)} \cdot \left( a \cdot x + b \right)^{c - \alpha},\, &\text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$$
$$\fbox{$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{\alpha} \cdot \frac{\Gamma\left( c + 1 \right)}{\Gamma\left( c - \alpha + 1 \right)} \cdot \left( a \cdot x + b \right)^{c - \alpha},\, \text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$} \tag{1}$$
wich can be simplefied via using the Falling Factorial $\left( x \right)_{y} = x^{\underline{y}}$.
or
$$
\begin{align*}
\operatorname{D_{x}^{0}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( a \cdot x + b \right)^{-c}\\
\operatorname{D_{x}^{1}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a \cdot c \cdot \left( a \cdot x + b \right)^{-c - 1}\\
\operatorname{D_{x}^{2}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{2} \cdot c \cdot \left( c + 1 \right) \cdot \left( a \cdot x + b \right)^{-c - 2}\\
\operatorname{D_{x}^{3}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a^{3} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( a \cdot x + b \right)^{-c - 3}\\
\operatorname{D_{x}^{4}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{4} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( c - 3 \right) \cdot \left( a \cdot x + b \right)^{-c - 4}\\
\operatorname{D_{x}^{5}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a^{5} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( c + 3 \right) \cdot \left( c + 4 \right) \cdot \left( a \cdot x + b \right)^{-c - 5}\\
&\cdots\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= \left( -a \right)^{n} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdots \left( c + n - 1 \right) \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{n} \cdot \frac{\left( c + n -1 \right)!}{\left( c - 1 \right)!} \cdot \left( a \cdot x + b \right)^{-c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{\alpha} \cdot \frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} \cdot \left( a \cdot x + b \right)^{-c - \alpha},\, &\text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$$
$$\fbox{$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{\alpha} \cdot \frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} \cdot \left( a \cdot x + b \right)^{-c - \alpha},\, \text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$} \tag{2}$$
You also can write this in terms of the Rising Factorial $x^{\left( y \right)} = x^{\overline{y}}$ ($\frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} = c^{\left( \alpha \right)}$). This is also sometimes called the Pochhammer Symbol.
That would mean that you'll get:
$$
\begin{align*}
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \frac{1}{1 - x} \right] &= \left( 1 \right)^{0.5} \cdot \frac{\Gamma\left( 1 + 0.5 \right)}{\Gamma\left( 1 \right)} \cdot \left( 1 - 1 \cdot x \right)^{-1 - 0.5}\\
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \frac{1}{1 - x} \right] &= \left( 1 \right)^{0.5} \cdot \frac{\Gamma\left( 1.5 \right)}{1} \cdot \left( 1 - x \right)^{-1.5}\\
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \frac{1}{1 - x} \right] &= \pm\Gamma\left( 1.5 \right) \cdot \frac{1}{\left( 1 - x \right)^{1.5}}\\
\end{align*}
$$
You can see a little Problem: $\left( x \right)^{0.5}$ has different branches at $x = 1$, which are two roots of unity of $1$ (aka $1$ and $-1$) aka you have to choose a branch. This get's even worst if see $\frac{1}{\left( 1 - x \right)^{-1.5}}$ aka you should norm wich branch you whant to take.
The plot of this would look like (for the main branch):
![Gamma[1.5] (1/(1 - x)^1.5) by Wolfram|Alpha](../../images/3322b6ed6b268573d6aeeaf8b9ad2a81.webp)
And the function of the main branch would be:
$$\fbox{$ \begin{align*}
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \frac{1}{1 - x} \right] &= \Gamma\left( 1.5 \right) \cdot \left| \frac{1}{\left( 1 - x \right)^{1.5}} \right|,\, \text{for}\, x \in \mathbb{R}_{< 1}\\
\end{align*} $} \tag{3}$$
If we insert $x = 0$ we get:
$$
\begin{align*}
&= \pm\Gamma\left( 1.5 \right) \cdot \frac{1}{\left( 1 - 0 \right)^{1.5}}\\
&= \pm\Gamma\left( 1.5 \right) \cdot \frac{1}{\left( 1 \right)^{1.5}}\\
&= \pm\Gamma\left( 1.5 \right) \cdot \frac{1}{\pm 1}\\
&= \pm\Gamma\left( 1.5 \right) \cdot \pm\frac{1}{1}\\
&= \pm\Gamma\left( 1.5 \right)\\
&= \pm\frac{1}{2} \cdot \sqrt{\pi}\\
\end{align*}
$$
I got the exact value of the Complete Gamma Function form Wikipedia.
Note: Both $\pm$ are independent of each other and $\frac{1}{2} \cdot \sqrt{\pi}$ would be the main branch.
Calculation Via Series Expansion
Another well-known and frequently used method to differentiate a function fractionally is simply to differentiate the series expansion of this function with addends from functions that are easier to differentiate fractionally.
$\frac{1}{1 - x}$ has a nice series expansion given by
$$
\begin{align*}
\frac{1}{1 - x} = 1 + \sum\limits_{k = 1}^{\infty}\left[ x^{k} \right].
\end{align*}
$$
If we now apply the Formula $\left( 1 \right)$ where $a = 1 ~\wedge~ b = 0 ~\wedge~ c = k$ to it (this is a spezial case sometimes called "Euler's Fractional Derivative of Monomials", we would get this:
$$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 + \sum\limits_{k = 1}^{\infty}\left[ x^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 \right] + \operatorname{D_{x}^{\alpha}}\left[ \sum\limits_{k = 1}^{\infty}\left[ x^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 \right] + \sum\limits_{k = 1}^{\infty}\left[ \operatorname{D_{x}^{\alpha}}\left[ x^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 \right] + \sum\limits_{k = 1}^{\infty}\left[ 1^{\alpha} \cdot \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot \left( 1 \cdot x + 0 \right)^{k - \alpha} \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 \right] + \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot x^{k - \alpha} \right]\\
\end{align*}
$$
Now only the Fractional Derivative of a constant is missing. The problem: the Fractional Derivative of a constant differs immensely depending on the definition of the differential operator. I mostly use the definition $\operatorname{D_{x}^{\alpha}}\left[ \text{constant} \right] = 0$.
However, a better definition would be
$\operatorname{D_{x}^{\alpha}}\left[ \text{constant} \right] = \begin{cases} 0,\, &\text{if}\, \alpha \geq 0\\
\sum\limits_{k = 1}^{\left\lfloor \left| \alpha \right| \right\rfloor}\left[ c_{k} \cdot x^{k} \right],\, &\text{if}\, \alpha < 0 \end{cases}$ where $\left\lfloor \cdot \right\rfloor$ is the Floor Function also called the Greatest Integer Function or Integer Value, since this also applies to $\alpha \in \mathbb{R}^{-}$ and can therefore be used for indefinite integrals. Using this would give us:
$$
\begin{equation*}
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \operatorname{D_{x}^{\alpha}}\left[ 1 \right] + \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot x^{k - \alpha} \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = 0 + \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot x^{k - \alpha} \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot x^{k - \alpha} \right]\\
\end{equation*}
$$
$$\fbox{$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \frac{1}{1 - x} \right] = \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - \alpha + 1 \right)} \cdot x^{k - \alpha} \right]\\
\end{align*}
$} \tag{4}$$
A Plot of the it for $\alpha = \frac{1}{2}$ looks like:
![Sum[Gamma(k + 1)/Gamma(k - 0.5 + 1) x^(k - 0.5),{k,1,[Infinity]}](../../images/60283d4f599eccb63a5dc96e08bb91c5.webp)
This function has exactly one branch. if we plug $x = 0$ and $\alpha = \frac{1}{2}$ in, we will get:
$$
\begin{align*}
&= \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k - 0.5 + 1 \right)} \cdot 0^{k - \alpha} \right]\\
&= \sum\limits_{k = 1}^{\infty}\left[ \frac{\Gamma\left( k + 1 \right)}{\Gamma\left( k + 0.5 \right)} \cdot 0 \right]\\
&= \sum\limits_{k = 1}^{\infty}\left[ 0 \right]\\
&= 0\\
\end{align*}
$$