Introduction
As is usually the case with Fractional Derivatives, there is also not "the Fractional Derivatives" for the Riemann Zeta Function $\zeta\left( \cdot \right)$. They differ depending on the method of derivation used and the type of Differential Operator. I'll use $\operatorname{D_{x}^{\alpha}}$ as a differential operator given by $\operatorname{D_{x}^{\alpha}} = \frac{\operatorname{d}^{\alpha}}{\operatorname{d}x^{\alpha}}$.
My Solutions And Their Derivations
Calculation Via Series Expansion
A series expansion appropriate for this question is the Laurent Series around $x = 1$ given by
$$
\begin{align*}
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( 1 - x \right)^{k} \right] \tag{0.1}\\
\end{align*}
$$
where $\gamma_{k}$ are the Stieltjes Constants and $\gamma_{0} = \gamma$ is the Euler-Mascheroni Constant.
Rewrtiging this a bit gives us:
$$
\begin{align*}
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( 1 - x \right)^{k} \right]\\
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( --\left( 1 - x \right) \right)^{k} \right]\\
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -\left( -1 + x \right) \right)^{k} \right]\\
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -\left( x - 1 \right) \right)^{k} \right]\\
\zeta\left( x \right) &= \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( x - 1 \right)^{k} \right] \tag{0.2}\\
\end{align*}
$$
With this we'll get:
$$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \frac{1}{x - 1} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( x - 1 \right)^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \frac{1}{x - 1} \right] + \operatorname{D_{x}^{\alpha}}\left[ \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( x - 1 \right)^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \frac{1}{x - 1} \right] + \sum\limits_{k = 0}^{\infty}\left[ \operatorname{D_{x}^{\alpha}}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( x - 1 \right)^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \frac{1}{x - 1} \right] + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{-1} \right] + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{k} \right] \right] \tag{0.3}\\
\end{align*}
$$
Now we only have the task of determining $\operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{k} \right]$. But we can make that even more general ($\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right]$) without making it that much harder.
"Euler Method" For $\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{\pm c} \right]$ ($c \geq 0$)
Leonhard Euler came up with a nice method for some Fractional Derivatives (see Euler's Approach). He has sorted the derivatives of the function by order and is trying to find a pattern in it. He then tried to transfer this pattern from integer orders to fractional ones, which I always affectionately call the "Euler method":
$$
\begin{align*}
\operatorname{D_{x}^{0}}\left[ \left( a \cdot x + b \right)^{c} \right] &= \left( a \cdot x + b \right)^{c}\\
\operatorname{D_{x}^{1}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a \cdot c \cdot \left( a \cdot x + b \right)^{c - 1}\\
\operatorname{D_{x}^{2}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{2} \cdot c \cdot \left( c - 1 \right) \cdot \left( a \cdot x + b \right)^{c - 2}\\
\operatorname{D_{x}^{3}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{3} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( a \cdot x + b \right)^{c - 3}\\
\operatorname{D_{x}^{4}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{4} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( c - 3 \right) \cdot \left( a \cdot x + b \right)^{c - 4}\\
\operatorname{D_{x}^{5}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{5} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdot \left( c - 3 \right) \cdot \left( c - 4 \right) \cdot \left( a \cdot x + b \right)^{c - 5}\\
&\cdots\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{n} \cdot c \cdot \left( c - 1 \right) \cdot \left( c - 2 \right) \cdots \left( c - n + 1 \right) \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{n} \cdot \frac{c!}{\left( c - n \right)!} \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{\alpha} \cdot \frac{\Gamma\left( c + 1 \right)}{\Gamma\left( c - \alpha + 1 \right)} \cdot \left( a \cdot x + b \right)^{c - \alpha},\, &\text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$$
$$\fbox{$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{\alpha} \cdot \frac{\Gamma\left( c + 1 \right)}{\Gamma\left( c - \alpha + 1 \right)} \cdot \left( a \cdot x + b \right)^{c - \alpha},\, \text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$} \tag{0.4}$$
wich can be simplefied via using the Falling Factorial $\left( x \right)_{y}$.
or
$$
\begin{align*}
\operatorname{D_{x}^{0}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( a \cdot x + b \right)^{-c}\\
\operatorname{D_{x}^{1}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a \cdot c \cdot \left( a \cdot x + b \right)^{-c - 1}\\
\operatorname{D_{x}^{2}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{2} \cdot c \cdot \left( c + 1 \right) \cdot \left( a \cdot x + b \right)^{-c - 2}\\
\operatorname{D_{x}^{3}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a^{3} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( a \cdot x + b \right)^{-c - 3}\\
\operatorname{D_{x}^{4}}\left[ \left( a \cdot x + b \right)^{c} \right] &= a^{4} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( c - 3 \right) \cdot \left( a \cdot x + b \right)^{-c - 4}\\
\operatorname{D_{x}^{5}}\left[ \left( a \cdot x + b \right)^{c} \right] &= -a^{5} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdot \left( c + 3 \right) \cdot \left( c + 4 \right) \cdot \left( a \cdot x + b \right)^{-c - 5}\\
&\cdots\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{c} \right] &= \left( -a \right)^{n} \cdot c \cdot \left( c + 1 \right) \cdot \left( c + 2 \right) \cdots \left( c + n - 1 \right) \cdot \left( a \cdot x + b \right)^{c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{n}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{n} \cdot \frac{\left( c + n -1 \right)!}{\left( c - 1 \right)!} \cdot \left( a \cdot x + b \right)^{-c - n},\, &\text{for}\, n \in \mathbb{N}\\
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{\alpha} \cdot \frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} \cdot \left( a \cdot x + b \right)^{-c - \alpha},\, &\text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$$
$$\fbox{$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \left( a \cdot x + b \right)^{-c} \right] &= \left( -a \right)^{\alpha} \cdot \frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} \cdot \left( a \cdot x + b \right)^{-c - \alpha},\, \text{for}\, \alpha \in \mathbb{R}^{+}\\
\end{align*}
$} \tag{0.5}$$
You also can write this in terms of the Rising Factorial $c^{\left( \alpha \right)}$ ($\frac{\Gamma\left( c + \alpha \right)}{\Gamma\left( c \right)} = c^{\left( \alpha \right)}$).
We can work with that. We obtain:
$$
\begin{align*}
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{-1} \right] + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \operatorname{D_{x}^{\alpha}}\left[ \left( x - 1 \right)^{k} \right] \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \left( -1 \right)^{\alpha} \cdot \frac{\Gamma\left( 1 + \alpha \right)}{\Gamma\left( 1 \right)} \cdot \left( 1 \cdot x - 1 \right)^{-1 - \alpha} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( -1 \right)^{\alpha} \cdot \frac{\Gamma\left( k + \alpha \right)}{\Gamma\left( k \right)} \cdot \left( 1 \cdot x - 1 \right)^{-k - \alpha} \right]\\
\operatorname{D_{x}^{\alpha}}\left[ \zeta\left( x \right) \right] &= \left( -1 \right)^{\alpha} \cdot \Gamma\left( 1 + \alpha \right) \cdot \frac{1}{\left( x - 1 \right)^{1 + \alpha}} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( -1 \right)^{\alpha} \cdot \frac{k \cdot \Gamma\left( k + \alpha - 1 \right)}{\Gamma\left( k + 1 \right)} \cdot \frac{1}{\left( x - 1 \right)^{k + \alpha}} \right]\\
\end{align*}
$$
Choosing $\alpha = \frac{1}{2}$, the main branch of this function and $x = 0$ gives:
$$
\begin{align*}
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \zeta\left( 0 \right) \right] &= \left( -1 \right)^{0.5} \cdot \Gamma\left( 1 + 0.5 \right) \cdot \frac{1}{\left( 0 - 1 \right)^{1 + 0.5}} + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \left( -1 \right)^{k} \cdot \left( -1 \right)^{0.5} \cdot \frac{k \cdot \Gamma\left( k + 0.5 - 1 \right)}{\Gamma\left( k + 1 \right)} \cdot \frac{1}{\left( 0 - 1 \right)^{k + 0.5}} \right]\\
\operatorname{D_{x}^{\frac{1}{2}}}\left[ \zeta\left( 0 \right) \right] &= -\Gamma\left( 1 + 0.5 \right) + \sum\limits_{k = 0}^{\infty}\left[ \frac{\gamma_{k}}{k!} \cdot \frac{k \cdot \Gamma\left( k - 0.5 \right)}{\Gamma\left( k + 1 \right)} \right]\\
\end{align*}
$$
Calculation Via Using Special Differential Operators
Riemann–Liouville Operator
The Riemann–Liouville Fractional Operator, on the other hand, uses the formulas for simplifying mutible integrals into single integral::
$$
\begin{align*}
\operatorname{_{a}D^{-v}_{x}}\left[ f\left( x \right) \right] \equiv \frac{1}{\Gamma\left( v \right)} \cdot \int\limits_{a}^{x} f\left( u \right) \cdot \left( x - u \right)^{v - 1} \, \operatorname{d}u \tag{1}\\
\end{align*}
$$
where $\Gamma\left( \cdot \right)$ ist the Complte Gamma Function.
This operator has a so-called Convolutional Formula, wich is just spezial case with $a = 0$, but it also takes advantage of the fact that integrating and deriving cancel each other out:
$$
\begin{align*}\operatorname{_{0}D^{v}_{x}}\left[ f\left( x \right) \right] \equiv \frac{1}{\Gamma\left( 1 - v \right)} \cdot \operatorname{D^{1}_{x}}\left[ \int\limits_{0}^{x} f\left( u \right) \cdot \left( x - u \right)^{-v}\, \operatorname{d}u \right] \tag{2}\\
\end{align*}
$$
This would give us:
$$
\begin{align*}
\operatorname{_{0}D^{0.5}_{x}}\left[ \zeta\left( x \right) \right] \equiv \frac{1}{\Gamma\left( 1 - 0.5 \right)} \cdot \operatorname{D^{1}_{x}}\left[ \int\limits_{0}^{x} \zeta\left( u \right) \cdot \left( x - u \right)^{-0.5}\, \operatorname{d}u \right] \tag{2}\\
\end{align*}
$$
But this does not converge at $x = 0$. It diverges to $\hat{\infty}$ (Complex Infinity) according to Wolfram|Alpha, which is probably also the reason why the calculation with other operators is also extremely difficult.
That was a lot to write... owo"
Q$1$
This mostly depends on the differenti aloperator tha you use. Principles give you a value or set of values that describe that location ($x = 0$). For sure. Your series expansion might be usefull for $x > 1$, but it would not be a particularly spectacular solution. Your definition of $0^{0}$ might change it a bit but you would not get a classical solution of Fractional Calculus. Depending on the application context, it might not be quite what you are looking for. It could even lead to contradictions in the context of an FDE.
You should use a series expansion for this, where not all summants add up to $0$ for a $x$. However, this series development should also be easy to derive fractionally. I looked through many series expansions of the Riemann Zeta Function and found only one series expansion that fulfills all of this: Laurent Series around $x = 1$
Q$2$
There are many different ways to achieve this. The easiest way would probably be to use Euler's method: For this you can look at my derivation from the equation complex $\left( 0.5 \right)$.