Some thoughts:
Case 1 $~ 0 < x \le \frac15$:
It suffices to prove that
$$\Gamma(x + 1) \ge \Gamma(x^x + 1).$$
Since $y \mapsto \Gamma(y + 1)$ is strictly increasing on $(1/2, 1]$, using $1/2 < x^x < 1$ for all $x\in (0, 1/5]$,
noting also that $x^x \le 1 + \frac56 x\ln x$ for all $x\in (0, 1/5]$, it suffices to prove that
$$\Gamma(x + 1) \ge \Gamma\left(2 + \frac56 x\ln x\right).$$
Fact 1: $\ln \Gamma(x + 1) \ge \frac{12x^3 - x^2 - 14x}{12x^2 + 36x + 24}$
for all $x > 0$.
(Hint: Take derivatives. Use (the digamma function) $\psi(u)
\ge \ln u - \frac{1}{2u} - \frac{1}{12u^2}$
for all $u > 0$.)
Fact 2: For all $v\in [1, 2]$,
$$\ln \Gamma(v) \le - \frac32\ln 2 + \frac{47}{24} + (v - 1/2)\ln v - v + \frac{1}{12v}.$$
(The proof is similar to that of Fact 1.)
Using Facts 1-2, it suffices to prove that
\begin{align*}
&\frac{12x^3 - x^2 - 14x}{12x^2 + 36x + 24}\\
\ge\, & - \frac32\ln 2 + \frac{47}{24} + \left(2 + \frac56 x\ln x - \frac12\right)\ln \left(2 + \frac56 x\ln x\right)\\
&\quad - \left(2 + \frac56 x\ln x\right) + \frac{1}{12(2 + \frac56 x\ln x)}.
\end{align*}
Fact 3: For all $x \in (0, 1]$,
$$\ln\left(2 + \frac56 x\ln x\right)
\le \ln 2 + \frac{10x\ln x}{24 + 5x\ln x}.$$
Using Fact 3, it suffices to prove that
\begin{align*}
&\frac{12x^3 - x^2 - 14x}{12x^2 + 36x + 24}\\
\ge\, & - \frac32\ln 2 + \frac{47}{24} + \left(2 + \frac56 x\ln x - \frac12\right)\cdot \left(\ln 2 + \frac{10x\ln x}{24 + 5x\ln x}\right)\\
&\quad - \left(2 + \frac56 x\ln x\right) + \frac{1}{12(2 + \frac56 x\ln x)}\\
=\, & F(x\ln x)
\end{align*}
where
$$F(u) = - \frac32\ln 2 + \frac{47}{24} + \left(2 + \frac56 u - \frac12\right)\cdot \left(\ln 2 + \frac{10u}{24 + 5u}\right) - \left(2 + \frac56 u\right) + \frac{1}{12(2 + \frac56 u)}.$$
It is not difficult to prove that $F(u)$ is strictly increasing on $(0, 1]$.
Fact 4: For all $x\in (0, 1/5]$,
$$x\ln x \le \frac{(10 - 5\ln 5)x^2 - (2 + \ln 5)x}{5x + 1}.$$
Using Fact 4, it suffices to prove that
$$\frac{12x^3 - x^2 - 14x}{12x^2 + 36x + 24}
\ge F\left(\frac{(10 - 5\ln 5)x^2 - (2 + \ln 5)x}{5x + 1}\right)$$
which is true (simply a polynomial inequality).