Let $n_{k+1}>n_k \in \mathbb{N}$, let $\alpha \in (0,+\infty)\setminus 2\pi\mathbb{Q}$. Prove that $\sin(\alpha n_k)$ doesn't converge.
Context: showing there exists a sequence $f_n \in C[0,1]$ with no uniformly convergent subsequence.
Proof: assume $\exists \lim_k \sin(\alpha n_k)$. Then $\exists \lim_k \sin(\alpha n_k+b)=\lim_k\sin(\alpha n_k)=:l$.
Now, $\sin(\alpha n_k+b)=\sin(\alpha n_k)\cos(b) + \cos(\alpha n_k)\sin(b)$.
Therefore $(\sin(\alpha n_k+b)-\sin(\alpha n_k)\cos(b))^2= \cos(\alpha n_k)^2\sin(b)=(1-\sin(\alpha n_k)^2)\sin(b)^2$.
Taking the limit yields $l^2(1-\cos(b))^2=(1-l^2)\sin(b)^2$.
If $l \neq \pm 1$ then $\displaystyle \frac{l^2}{1-l^2}=\frac{\sin(b)^2}{(1-\cos(b))^2}$, which is not a constant. Otherwise take the reciprocal.
Question: why "$\exists \lim_k \sin(\alpha n_k)\implies\exists \lim_k \sin(\alpha n_k+b)=\lim_k\sin(\alpha n_k)$"?
The above proof is based on this post