$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\bbox[5px,#ffd]{}}$
\begin{align}
&\bbox[5px,#ffd]{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} - 1}\,\dd x} \leq
\int_{0}^{\infty}{2\pars{\root{x} - 1} \over x^{2} - 1}\,\dd x
\end{align}
See $\ds{\color{black}{\bf 4.1.37}\,\,}$ in A & S Table.
Then,
\begin{align}
&\bbox[5px,#ffd]{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} - 1}\,\dd x} \leq
2\int_{0}^{\infty}{\dd x \over \pars{\root{x} + 1}
\pars{x + 1}}
\end{align}
The RHS is convergent since its integrand is
$\ds{\sim x^{-3/2}}$ as $\ds{x \to \infty}$.