$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With the $\ds{\ln}$ branch cut
$\ds{\pars{\left.\ln\pars{z}\right\vert_{\ z\ \not=\ 0} = \ln\pars{\verts{z}} + \,\mrm{arg}\pars{z}\ic\,,\ -\pi < \,\mrm{arg}\pars{z} < \pi}}$, I'll evaluate
$\ds{\oint_{\mrm{C}}{\ln\pars{z} \over z^{4} - 1}\,\dd z}$ in a quarter circumference in the first quadrant:
\begin{align}
\int_{0}^{\infty}{\ln\pars{x} \over x^{4} - 1}\,\dd x &
\,\,\,\stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\,
-\,\Re\int_{\infty}^{1 + \epsilon}
{\ln\pars{y} + \pi\ic/2 \over y^{4} - 1}\,\ic\,\dd y -
\Re\int_{0}^{-\pi}{\ln\pars{\ic + \epsilon\expo{\ic\theta}} \over
\pars{\ic + \epsilon\expo{\ic\theta}}^{4} - 1}
\,\epsilon\expo{\ic\theta}\ic\,\dd\theta
\\[3mm] &
-\,\Re\int_{1 - \epsilon}^{0}
{\ln\pars{y} + \pi\ic/2 \over y^{4} - 1}\,\ic\,\dd y
\\[1cm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\,
-\,{1 \over 2}\,\pi\,\mrm{P.V.}\int_{0}^{\infty}{\dd y \over y^{4} - 1} +
\Re\int_{-\pi}^{0}{\pi\ic/2 \over 4i^{3}\epsilon\expo{\ic\theta}}\,
\epsilon\expo{\ic\theta}\ic\,\dd\theta
\\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\,
-\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}}
\bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} +
\int_{1 + \delta}^{\infty}{\dd y \over y^{4} - 1}}
\\[5mm] & =
-\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}}
\bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} +
\int_{1/\pars{1 + \delta}}^{0}{\pars{-1/y^{2}}\dd y \over 1/y^{4} - 1}}
\\[5mm] & =
-\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}}
\bracks{\int_{0}^{1 - \delta}{\dd y \over y^{4} - 1} -
\int_{0}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1}\,\dd y}
\\[5mm] & =
-\,{1 \over 2}\,\pi\,\lim_{\delta \to 0^{+}}
\bracks{\int_{0}^{1 - \delta}{1 - y^{2} \over y^{4} - 1}\,\dd y -
\int_{1 - \delta}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1}\,\dd y} =
{1 \over 2}\,\pi\int_{0}^{1}{\dd y \over y^{2} + 1}
\\[5mm] & =
\bbx{\phantom{^{2}}\pi^{2} \over 8}
\end{align}
By simplicity, I omitted the integral along the arc which vanishes out as the arc radius $\ds{R \to \infty}$. Indeed, as $\ds{R \to \infty}$ the magnitude of such integral behaves as $\ds{\pars{\pi/2}\ln\pars{R}/R^{3}}$.
Note that
\begin{align}
&0 < \verts{\int_{1 - \delta}^{1/\pars{1 + \delta}}{y^{2} \over y^{4} - 1}
\,\dd y} <
\verts{{1 \over 1 + \delta} - \pars{1 - \delta}}
{1/\pars{1 + \delta}^{2} \over 1 - \pars{1 - \delta}^{2}}
\,\,\,\stackrel{\mrm{as}\ \delta\ \to\ 0^{+}}{\to}\,\,\,{\large 0}
\end{align}