Let $f(x)$ be a polynomial in $\mathbb{Q}[x]$. Prove that if $a + \sqrt2 b$ is a zero of $f(x)$ then so is $a - \sqrt2b$.
Can I treat $a + \sqrt2 b$ like a complex number? Then I can do something like
let $f(x) = \sum a_ix^i$, and $z = a+\sqrt2b$
Then $f(\bar z) = \sum a_i \bar z^i = ... = \bar{f(z)}$.
If not.. what else can I try?