Hint $ $ Any polynomial with $\rm\color{#0a0}{rational}$ coefficients having root $\,w = 1+\sqrt{3}\,$ also has as root its conjugate $\,\bar w = 1-\sqrt{3}\,$ since, in the field $\,\rm F =\color{#0a0}{\Bbb Q}(\sqrt 3) = \{ a\!+\!b\sqrt 3\, :\, a,b\in\Bbb Q\}\,$ we have
Key Idea $ $ Conjugation $\rm\:w=a+b\sqrt{3}\,\mapsto\, \bar w = a-b\sqrt{3}\in F\:$ $\rm\:\color{#c00}{preserves\ sums\,\ \&\,\ products}.\:$ Further, conjugation $\rm\color{#0a0}{fixes\ rationals}\in\color{#0a0}{\Bbb Q}.\:$ Hence, by induction, it preserves polynomial functions with $\rm\color{#0a0}{rational}$ coefs, i.e. $\rm\ \overline{f(w)} = f(\overline w),\,$ for all $\rm\, f(x)\in\color{#0a0}{\Bbb Q}[x],\, $ since such polynomials are compositions of said basic sum & product operations. $ $ More explicitly
$$ \begin{eqnarray}
\rm \overline{f(w)}\:
&=&\rm\ \ \overline{a_n w^n +\,\cdots + a_1 w + a_0}\\
&=&\rm\,\ \overline{a_n w^n}\, +\,\cdots + \overline{a_1 w} + \overline a_0\quad by\ \ \ \color{#c00}{\overline{x+y}\, =\, \overline x + \overline y}\ \ \ \forall\ x,y \in F\\
&=&\rm\,\ \overline a_n\, \overline w^n+\,\cdots + \overline a_1\overline w + \overline a_0\quad by\ \ \ \color{#c00}{\overline{x\, *\, y}\, =\, \overline x\:\! *\, \overline y}\ \ \ \forall\ x,y \in F \\
&=&\rm\,\ a_n\, \overline w^n + \,\cdots + a_1 \overline w + a_0\quad by\ \ \ \color{#0a0}{\overline a = a}\ \ \forall\ \color{#0a0}a\in \color{#0a0}{\Bbb Q}\\
&=&\rm\ f(\overline w)\\
\rm\!\! So\ \ 0\! =\! f(w) \Rightarrow \bar 0 = \overline{f(w)}& =&\ \rm f(\overline w),\ \ i.e.\ \ \bbox[6px,border:2px solid #c00]{w\ root\ of\ f\,\Rightarrow\, \overline w\ root\ of\ f}\quad {\bf QED}
\end{eqnarray}$$
This usually fails if $\rm\,f\,$ has coefficients $\color{#0a0}{\not\in\Bbb Q}\,$ e.g. $\rm\,\bar w\,$ is a root of $\rm\,x\!-\!w\,$ iff $\rm\,\bar w = w,\,$ i.e. $\rm\,w\in \Bbb Q.$
Remark $ $ The analogous polynomial preservation property holds true for any algebraic structure, i.e. since homomorphisms preserve the basic operations (including constants = $0$-ary operations), they also preserve the "polynomial" terms composed of these basic operations. Said equivalently, hom's commute with polynomials.