To prove an integral result, I have got to evaluate $$\sum_{k=0}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{n+1}} \text{ where } n\in\Bbb N$$ But since I haven't got much knowledge on evaluating series of this kind, some help or clues would be appreciated. Thank you in advance
-
How does $n$ relate to $k$? – Parcly Taxel Oct 17 '20 at 12:27
-
I just edited it – Perch Oct 17 '20 at 12:30
-
Even values of $n$ have results that may be expressed in terms of powers of $\pi$, while odd values of $n$ do not. – Ron Gordon Oct 17 '20 at 12:36
-
For $n=1$, it is the negative of Catalan's constant. The general formula seems to be $-2^{-2n-2}\left(\zeta\left(n+1,\dfrac 14\right)-\zeta\left(n+1,\dfrac 34\right)\right)$ according to W|A – Prasun Biswas Oct 17 '20 at 12:40
-
I found a post related to the Euler product $\sum\limits_{n\ge 2}\frac{(-1)^{n+1}}{(2n+1)^{s+1}}$. – PinkyWay Oct 17 '20 at 12:54
4 Answers
One way to find the special values of the Dirichlet beta function at the odd natural numbers is to relate it to the Euler numbers through the Maclaurin series for the secant,
$$\sec(z)=\sum_{n=0}^\infty\frac{(-1)^n E_{2n}}{(2n)!}z^{2n},\qquad|z|<\pi/2.$$
If we take the logarithmic derivative of
$$\tan\left(\frac{\pi z}{2}\right)+\sec\left(\frac{\pi z}{2}\right)=\prod_{n=-\infty}^\infty\left(1-\frac{z}{4n-1}\right)\left(1-\frac{z}{4n+1}\right)^{-1}$$
we get
$$\begin{align*} \frac{\pi}{2}\sec\left(\frac{\pi z}{2} \right ) &=\sum_{n=-\infty}^\infty\left(\frac{-\frac{1}{4n-1}}{1-\frac{z}{4n-1}}-\frac{-\frac{1}{4n+1}}{1-\frac{z}{4n+1}} \right ) \\ &=\sum_{n=-\infty}^\infty\left(\sum_{k=0}^\infty\frac{z^k}{(4n+1)^{k+1}}-\sum_{k=0}^\infty\frac{z^k}{(4n-1)^{k+1}} \right ),\;\;|z|<\pi/2 \\ &\qquad\text{geometric series} \\ &=\sum_{k=0}^\infty 2\beta(2k+1)z^{2k}, \\ &\qquad\text{switch the order of summation and notice cancellation}. \end{align*}$$
We now have two series for $\frac{\pi}{2}\sec\left(\frac{\pi z}{2}\right)$,
$$\sum_{n=0}^\infty\frac{(-1)^n E_{2n}\pi^{2n+1}}{2\cdot4^n(2n)!}z^{2n}=\sum_{n=0}^\infty 2\beta(2n+1)z^{2n}.$$
And upon equating coefficients we find that
$$\beta(2n+1)=\frac{(-1)^n E_{2n}\pi^{2n+1}}{4^{n+1}(2n)!},\qquad n\geq0.$$

- 2,083
$$\sum_{k=0}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{n+1}}x^k=-2^{-(n+1)} \Phi \left(-x,n+1,\frac{1}{2}\right)$$ where appears the Lerch transcendent function.
For the case where $x=1$, this reduces to $$\sum_{k=0}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{n+1}}=2^{-2(n+1)} \left(\zeta \left(n+1,\frac{3}{4}\right)-\zeta \left(n+1,\frac{1}{4}\right)\right)$$ as given in comments.

- 260,315
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\left.\sum_{k = 0}^{\infty}{\pars{-1}^{k + 1} \over \pars{2k + 1}^{n + 1}}\,\right\vert_{\ n\ \in\ \mathbb{N}}} \\[5mm] = & \sum_{k = 0}^{\infty}{1 \over \bracks{2\pars{2k + 1} + 1}^{\,n + 1}} + \sum_{k = 0}^{\infty}{-1 \over \bracks{2\pars{2k + 2} + 1}^{\,n + 1}} \\[5mm] = & {1 \over 4^{n + 1}}\sum_{k = 0}^{\infty} {1 \over \pars{k + 3/4}^{\,n + 1}} - {1 \over 4^{n + 1}}\sum_{k = 0}^{\infty} {1 \over \pars{k + 5/4}^{\,n + 1}} \\[5mm] = & \bbx{{1 \over 2^{2n + 2}}\bracks{\zeta\pars{n + 1,{3 \over 4}} - \zeta\pars{n + 1,{5 \over 4}}}} \\ & \end{align} where $\ds{\zeta\pars{s,\alpha}}$ is the Hurwitz Zeta Functon.

- 89,464