If a "public of engineers" wants a much more detailed proof, see below.
We assume $Re(s) > 1$ until indicated otherwise.
\begin{align*}
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} &= \sum_{n=1}^{1} \frac{n}{n^s}
+ \sum_{n=2}^{\infty} \frac{1}{n^s}
= \sum_{n=1}^{1} \frac{n}{n^s} + \sum_{n=2}^{\infty} \frac{n - (n-1)}{n^s} \\
&= \sum_{n=1}^{1} \frac{n}{n^s} + \sum_{n=2}^{\infty} \frac{n}{n^s}
- \sum_{n=2}^{\infty} \frac{n-1}{n^s}
= \sum_{n=1}^{\infty} \frac{n}{n^s} - \sum_{n=2}^{\infty} \frac{n-1}{n^s} \\
&= \sum_{n=1}^{\infty} \frac{n}{n^s} - \sum_{n=1}^{\infty} \frac{n}{(n+1)^s}
= \sum_{n=1}^{\infty} n\left[ \frac{1}{n^s} - \frac{1}{(n+1)^s}\right] \\
& = s \sum_{n=1}^{\infty} n \int_n^{n+1} x^{-s-1}\,dx.
\end{align*}
Since $[x] = n$ for any $x$ in the interval $[n,n+1)$, we have
\begin{align*}
&= s \sum_{n=1}^{\infty} \int_n^{n+1} [x]x^{-s-1}\,dx
= s \int_1^{\infty} [x]x^{-s-1}\,dx \\
&= s \left[ \int_1^{\infty} x^{-s}\,dx \right] - s \int_1^{\infty} \{x\} x^{-s-1}\,dx
\quad\text{(because $[x] = x − \{x\}$)}.\\
&= s \left[ \frac{x^{-s+1}}{-s+1} \Bigg|_1^{\infty} \right] - s \int_1^{\infty} \{x\} x^{-s-1}\,dx,
\end{align*}
allowing the following simplification
\begin{align*}
\zeta(s) &= \frac{s}{s-1} - s\int_{1}^{\infty} \frac{\{x\} }{x^{s+1}}\,dx
\quad Re(s) > 1.
\end{align*}
Because $0 \leq \{x\} \leq 1$, the last integral converges and is holomorphic on $Re(s) > 0$. But that means the full equation is meromorphic on $Re(s) > 0$, and thus provides an analytic continuation of $\zeta(s)$ on the half plane $Re(s) > 0$. The $s/(s-1)$ term gives a simple pole at $s = 1$ with residue $1$.