$$I=\int_{0}^{1}\frac{log(1-x)log(x+x^2)}{1+x^2}dx$$
$$=\underbrace{\int_{0}^{1}\frac{log(1-x)log(x)}{1+x^2}dx}_{I_1}+\underbrace{\int_{0}^{1}\frac{log(1-x)log(1+x)}{1+x^2}dx}_{I_2}$$
Let's start evaluating $I_2$ using Leibniz Rule:
$$I_2={\int_0^1}\frac{log(1-x)log(1+x)}{1+x^2}dx=-{\int_0^1}{\int_0^1}{\int_0^1}\frac{x^2}{(1+x^2)(1-yx)(1+xz)}dydzdx$$
$$={\int_0^1}{\int_0^1}{\int_0^1}dxdydz\\\left(\frac{(1+yz)+x(y-z)}{(1+y^2)(1+z^2)(1+x^2)}-\frac{y}{(1+y^2)(y+z)(1-yz)}-\frac{z}{(1+z^2)(y+z)(1+zx)}\right)$$
$$={\int_0^1}{\int_0^1}dydz\left(\frac{\frac{\pi}{4}(1+yz)+\frac{log(2)}{2}(y-z)}{(1+y^2)(1+z^2)}+\underbrace{\frac{log(1-y)}{(1+y^2)(y+z)}}_{y\rightarrow z\\ z\rightarrow y}+\frac{log(1+z)}{(1+z^2)(y+z)}\right)$$
$$={\int_0^1}{\int_0^1}dydz\left(\frac{\frac{\pi}{4}(1+yz)+\frac{log(2)}{2}(y-z)}{(1+y^2)(1+z^2)}+\frac{log\left(\frac{1-z}{1+z}\right)}{(1+z^2)(y+z)}\right)$$
$$=\int_0^1\left(\frac{\frac{\pi^2}{16}+\frac{log^2(2)}{2}}{1+z^2}+\underbrace{\frac{log\left(\frac{1-z}{1+z}\right)log\left(\frac{1+z}{z}\right)}{1+z^2}}_{z\rightarrow \frac{1-x}{1+x}}\right)dz$$
$$=\frac{\pi}{4}\left(\frac{\pi^2}{16}+\frac{log^2(2)}{4}\right)+log(2)\int_0^1\frac{log(x)}{1+x^2}dx-\underbrace{\int_{0}^{1}\frac{log(x)log(1-x)}{1+x^2}dx}_{I_1}$$
$$=\frac{\pi^3}{64}+\frac{\pi}{16}log^2(2)-Glog(2)-I_1$$
Hence:
$$I=I_1+I_2=\int_{0}^{1}\frac{log(1-x)log(x+x^2)}{1+x^2}dx
=\frac{\pi^3}{64}+\frac{\pi}{16}log^2(2)-Glog(2)\ \blacksquare$$