How to prove $$\int_0^1\frac{\ln(1-x)\ln(1+x)}{1+x^2}\ dx=\text{Im}\left(\operatorname{Li}_3(1+i)\right)-\frac{\pi^3}{32}-G\ln2 \ ?$$ where $\operatorname{Li}_3(x)=\sum\limits_{n=1}^\infty\frac{x^n}{n^3}$ is the trilogarithm and $G=\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^2}$ is Catalan's constant
Trying the algebraic identity $\ 4ab=(a+b)^2-(a-b)^2\ $ where $\ a=\ln(1-x)$ and $b=\ln(1+x)\ $is not helpful here and the integral will be more complicated.
Also, applying IBP or substituting $x=\frac{1-y}{1+y}$ is not that useful either.
All approaches are appreciated.