Prove that the function $$f(m,n)=\frac{1}{2}\left(m^2+2 m n+n^2+m+3 n\right)$$ is a bijection between $\mathbb{N}^2$ and $\mathbb{N}$.
The problem arose in a series problem. I have to show that for each couple $(m,n)$ we get a different natural number and that all natural numbers are got applying $f$.
Below an example of what happens for $m,n$ from $0$ to $6$
$$ \begin{array}{ccccccc} 0 & 2 & 5 & 9 & 14 & 20 & 27 &\ldots\\ 1 & 4 & 8 & 13 & 19 & 26 & 34 &\ldots\\ 3 & 7 & 12 & 18 & 25 & 33 & 42 &\ldots\\ 6 & 11 & 17 & 24 & 32 & 41 & 51 &\ldots\\ 10 & 16 & 23 & 31 & 40 & 50 & 61 &\ldots\\ 15 & 22 & 30 & 39 & 49 & 60 & 72 &\ldots\\ 21 & 29 & 38 & 48 & 59 & 71 & 84 &\ldots\\ \ldots\\ \end{array} $$