There is a partial answer, which corresponds to the value $k=2.$
Firstly, since
$$\det A^k= {\det}^k A = \underbrace{111\dots11}_k\det A,$$
then the easiest case of the solution is
$$\det A=0,\tag1$$
as in the given example.
Let us consider the possible dimensions $n$ of the matrix $A.$
$\color{brown}{\textbf{Case n=1.}}$
The case is trivial, it does not correspond with the task statement.
Also, the equation $a^k = \underbrace{111\cdot11}_k$ has not solutions.
This fact excludes solutions in the form $A=aE,$ where $\;E\;$ is an arbitrary unit matrix (or transformed unit matrix).
$\color{brown}{\textbf{Case n=2.}}$
The equation
$$\begin{pmatrix} a & b \\ c & d\end{pmatrix}^2 =
11\begin{pmatrix} a & b \\ c & d\end{pmatrix},$$
or
$$\begin{pmatrix} a^2+bc & b(a+d) \\ c(a+d) & bc+d^2\end{pmatrix}^2 =
\begin{pmatrix} 11a & 11b \\ 11c & 11d\end{pmatrix},$$
\begin{cases}
a+d=11\\
bc = ad,
\end{cases}
leads to the solutions in the matrix forms of
$$\begin{cases}
\begin{pmatrix} 2 & 9 \\ 2 & 9\end{pmatrix},
\begin{pmatrix} 2 & 2 \\ 9 & 9\end{pmatrix},
\begin{pmatrix} 2 & 3 \\ 6 & 9\end{pmatrix},
\begin{pmatrix} 2 & 6 \\ 3 & 9\end{pmatrix}; \\[4pt]
\begin{pmatrix} 9 & 9 \\ 2 & 2\end{pmatrix},
\begin{pmatrix} 9 & 2 \\ 9 & 2\end{pmatrix},
\begin{pmatrix} 9 & 3 \\ 6 & 2\end{pmatrix},
\begin{pmatrix} 9 & 6 \\ 3 & 2\end{pmatrix}; \\[4pt]
\begin{pmatrix} 3 & 8 \\ 3 & 8\end{pmatrix},
\begin{pmatrix} 3 & 3 \\ 8 & 8\end{pmatrix},
\begin{pmatrix} 3 & 4 \\ 6 & 8\end{pmatrix},
\begin{pmatrix} 3 & 6 \\ 4 & 8\end{pmatrix}; \\[4pt]
\begin{pmatrix} 8 & 8 \\ 3 & 3\end{pmatrix},
\begin{pmatrix} 8 & 3 \\ 8 & 3\end{pmatrix},
\begin{pmatrix} 8 & 4 \\ 6 & 3\end{pmatrix},
\begin{pmatrix} 8 & 6 \\ 4 & 3\end{pmatrix}; \\[4pt]
\begin{pmatrix} 4 & 7 \\ 4 & 7\end{pmatrix},
\begin{pmatrix} 4 & 4 \\ 7 & 7\end{pmatrix},
\begin{pmatrix} 7 & 7 \\ 4 & 4\end{pmatrix},
\begin{pmatrix} 7 & 4 \\ 7 & 4\end{pmatrix}; \\[4pt]
\begin{pmatrix} 5 & 6 \\ 5 & 6\end{pmatrix},
\begin{pmatrix} 5 & 5 \\ 6 & 6\end{pmatrix},
\begin{pmatrix} 6 & 6 \\ 5 & 5\end{pmatrix},
\begin{pmatrix} 6 & 5 \\ 6 & 5\end{pmatrix}.
\end{cases}\tag2$$
For example,
$$\begin{pmatrix} 2 & 6 \\ 3 & 9\end{pmatrix}^2 =
\begin{pmatrix} 22 & 66 \\ 33 & 99\end{pmatrix},$$
All the solutions satisfies to the next conditions:
- the sum of rows(columns) divides to 11;
- the rows(columns) are collinear.
$\color{brown}{\textbf{Case n=3.}}$
Let us search non-trivial solutions in the form of
$$A = \begin{pmatrix} k & a & b \\ ky & ay & by \\ kz & az & bz \tag3\end{pmatrix},$$
then WLOG
\begin{cases}
bz = 11-k-ay\\[4pt]
a \le y, \quad b\le z,
\end{cases}
and this lead to the basic equalities in the forms of
\begin{align}
&\begin{pmatrix} 1 & 1 & 1 \\ y & y & y \\ 10-y & 10-y & 10-y\end{pmatrix}^2 =
11\,\begin{pmatrix} 1 & 1 & 1 \\ y & y & y \\ 10-y & 10-y & 10-y\end{pmatrix},
\qquad (y=1,2,\dots,9);\\[4pt]
&\begin{pmatrix} 1 & 1 & 2 \\ 10-2z & 10-2z & 20-4z \\ z & z & 2z \end{pmatrix}^2 = 11\begin{pmatrix} 1 & 1 & 2 \\ 10-2z & 10-2z & 20-4z \\ z & z & 2z \end{pmatrix},\qquad (z=2,3,4);\\[4pt]
&\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}^2 =
\begin{pmatrix} 11 & 11 & 33 \\ 11 & 11 & 33 \\ 33 & 33 & 99 \end{pmatrix};\\[4pt]
&\begin{pmatrix} 1 & 2 & 1 \\ y & 2y & y \\ 10-2y & 20-4y & 10-2y\end{pmatrix} =
11\begin{pmatrix} 1 & 2 & 1 \\ y & 2y & y \\ 10-2y & 20-4y & 10-2y\end{pmatrix},\qquad (y=2,3,4);\\[4pt]
&\begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 3 & 6 & 6\end{pmatrix}^2 =
\begin{pmatrix} 11 & 22 & 33 \\ 22 & 44 & 44 \\ 33 & 66 & 66\end{pmatrix};\\[4pt]
&\begin{pmatrix} 1 & 2 & 2 \\ 3 & 6 & 6 \\ 2 & 4 & 4 \end{pmatrix}^2 =
\begin{pmatrix} 11 & 22 & 22 \\ 33 & 66 & 66 \\ 22 & 44 & 44\end{pmatrix};\\[4pt]
&\color{brown}{\mathbf{\begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1\end{pmatrix}^2 =
\begin{pmatrix} 11 & 33 & 11 \\ 33 & 99 & 33 \\ 11 & 33 & 11\end{pmatrix};}}\\[4pt]
&\begin{pmatrix} 2 & a & 9-a \\ 2 & a & 9-a \\ 2 & a & 9-a\end{pmatrix}^2 =
11 \begin{pmatrix} 2 & a & 9-a \\ 2 & a & 9-a \\ 2 & a & 9-a\end{pmatrix},
\qquad (a=1,2,\dots,8);\\[4pt]
&\begin{pmatrix} 3 & a & 8-a \\ 3 & a & 8-a \\ 3 & a & 8-a\end{pmatrix}^2 =
11 \begin{pmatrix} 3 & a & 8-a \\ 3 & a & 8-a \\ 3 & a & 8-a\end{pmatrix},
\qquad (a=1,2,3,4);\\[4pt]
&\begin{pmatrix} 1 & 2 & 8 \\ 1 & 2 & 8\\ 1 & 2 & 8\end{pmatrix}^2 =
\begin{pmatrix} 11 & 22 & 88 \\ 11 & 22 & 88 \\ 11 & 22 & 88\end{pmatrix};\\[4pt]
&\begin{pmatrix} 1 & 3 & 7 \\ 1 & 3 & 9 \\ 1 & 1 & 9\end{pmatrix}^2 =
\begin{pmatrix} 11 & 33 & 77 \\ 11 & 33 & 77 \\ 11 & 33 & 77\end{pmatrix};\\[4pt]
\end{align}
etc.
Besides,
$$\begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 6 \\ 4 & 4 & 8\end{pmatrix}^2
= \begin{pmatrix} 0 & 0 & 0 \\ 33 & 33 & 66 \\ 44 & 44 & 88\end{pmatrix},$$
$$\color{brown}{{
\begin{pmatrix} 4 & 3 & 2 \\ 4 & 3 & 2 \\ 8 & 6 & 4 \end{pmatrix}^2 =
\begin{pmatrix} 44 & 33 & 22 \\ 44 & 33 & 22 \\ 88 & 66 & 44 \end{pmatrix}.
}}\tag4$$
At the same time,
$$\color{brown}{{
\begin{pmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{pmatrix}^2
= 13_{\text{dec}} \begin{pmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{pmatrix}
= \begin{pmatrix} 22 & 33 & 44 \\ 22 & 33 & 44 \\ 44 & 66 & 88 \end{pmatrix}_{12} }}\tag5$$
in twelve-digit number system.
Besides, this kind of matrices can be obtained, using transformations of the solutions.
$\color{brown}{\mathbf{Case\ n\ge 4.}}$
Solutions in the form of
\begin{pmatrix}
k & a & b & c & \dots \\
kz & az & bz & cz & \dots \\
ky & ay & by & cy & \dots \\
kx & ax & bx & cx & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
can be obtained from the solutions of the equation
$$k + az + by + cx + \dots = 11.$$
So there are a lot of solutions with a strictly positive elements.
For example,
$$\color{brown}{\mathbf{
\begin{pmatrix}
1&2&1&2&1 \\ 2&4&2&4&2 \\ 1&2&1&2&1 \\ 2&4&2&4&2 \\ 1&2&1&2&1
\end{pmatrix}^2
=\begin{pmatrix}
11&22&11&22&11 \\ 22&44&22&44&22 \\ 11&22&11&22&11 \\ 22&44&22&44&22 \\ 11&22&11&22&11
\end{pmatrix}.}}\tag6
$$
Looks perfect the solution for $n=11:$
$$\color{brown}{\mathbf{
\begin{pmatrix}
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1 \\
1&1&1&1&1& 1 &1&1&1&1&1
\end{pmatrix}.}}\tag7$$
If $n>11,$ then solutions should contain zeros.
$\color{brown}{\textbf{Allowed transformations of matrices.}}$
Allowed transformations of matrices are transposition and sparsing.
There are two kinds of the allowed sparsing:
- Inserting of the zero row and zero before or after diagonal element of matrix;
- Substitution of each matrices element $a$ to the $2\times2$ matrix in the form of
$$\begin{pmatrix} a & 0 \\ 0& a \end{pmatrix}\tag8.$$
In particular, the matrices in the forms of
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix},
\begin{pmatrix} a & 0 & b \\ 0 & 0 & 0 \\ c & 0 & d \end{pmatrix},
\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0 \end{pmatrix},
\tag9$$
where $a,b,c,d$ correspond to the $2\times2$ solutions $(2),$ are the solutions in the $3\times3$ case.