I'm aware of another post on this vector identity, but I have a question on the derivation based on P47 of Source: http://www.unl.edu.ar/ceneha/uploads/Cartesian_tensors_Index_notation_&_summation_convention.pdf.
$$ [\color{green}{\nabla} \color{brown}{\times} (\mathbf{F} \times \mathbf{G})]_i = \color{brown}{\epsilon_{ijk}}\color{green}{\partial_j}(\epsilon_{lmk}F_l G_m)$$ $$ = \underbrace{\color{brown}{\epsilon_{ijk}}\epsilon_{klm}}_{\Large= { \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}}}\color{green}{\partial_j}F_l G_m $$ Next, since we're working with the $i$th component, change $l \rightarrow i \text{ & } j \rightarrow m$ in the first term and change $m \rightarrow i \text{ & } j \rightarrow l$ in the second term. $$ = \color{red}{(\partial_mF_i)G_m} + F_i(\partial_mG_m) - (\partial_lF_l)G_i - F_l(\partial_lG_i)$$ $$ = \color{red}{?} + F_i(\nabla \centerdot \mathbf{G}) - (\nabla \cdot \mathbf{F})G_i - (\mathbf{F} \cdot \nabla)G_i$$
Question: How do I simplify $\color{red}{(\partial_mF_i)G_m}$? How do I decide between
$2.(\partial_mG_m)F_i$
$3.(G_m\partial_m)F_i$
or some other permutation of these three objects...?