Below are four proofs using various methods.
You seem to seek a direct proof showing a factor of $10$ so let's do that first.
$$\begin{align} x &\,=\ \ \ \ \, 7\cdot 11^{\large 2n+1}\ -\ 3^{\large 4n-1}\\[.2em]
\Rightarrow\ \ 3x &\,=\ \ \, 21\cdot 11\cdot 121^n - 81^n\\[.2em]
&\,=\, (21\cdot11\!-\!1)121^n+ \color{#0a0}{121^n-81^n}\\[.2em]
&\,=\, \color{#c00}{10}\,(23\cdot 121^n + \color{#c00}4(121^{n-1} + \cdots + 81^{n-1}))\
\end{align}\qquad$$
where we used the Factor Theorem to deduce $\,\color{#c00}{10\cdot 4} = 121\!-\!81\,$ divides $\,\color{#0a0}{121^n-81^n}.\,$
Thus $\,10\mid 3x\Rightarrow 10\mid x\,$ by Euclid (or directly $\,10\mid 7(3x)\!-\!20x = x,\,$ or cancel $3$ from $121$'s and $81$'s).
It's much easier by modular arithmetic (congruences)
$$\begin{align}\bmod 10\!:\ \ 3x &\equiv 21\cdot 11^{\large 2n+1} - 81^{\large n}\\
\iff\ 3x &\equiv \ \ 1\ \cdot\ 1^{\large 2n+1}\ -\ 1^{\large n} \equiv\color{#0a0} 0\\
\iff\ \ \ x &\equiv\,3^{-1}\cdot\color{#0a0} 0\equiv 0
\end{align}\qquad$$
by basic congruence laws. We used the fact that scaling by an invertible (here $3$) yields an equivalent congrence (recall by Bezout that $3$ is invertible being coprime to the modulus $10)$
By induction: base case $\,n=1\,$ is $\!\bmod 10\!:\ 7\cdot 11^3\equiv 3^3\,$ (or $\,7\cdot 11\equiv 1/3\,$ for $\,n=0)\,$ which are both true, and the induction step follows conceptually by simply by multiplying the first two congruences below using $\rm\color{#0a0}{CPR} =$ Congruence Product Rule,
$$\begin{align}\bmod 10\!:\qquad\ \ \ \color{#c00}{11^{\large 2}}\ &\equiv\ \color{#c00}{3^{\large 4}}\\[.2em]
{\rm times}\ \ \ \ \ \ \ 7\cdot 11^{\large 2n+1}&\equiv3^{\large 4n-1}\quad \ P(n)_{\phantom{|}}\\[.2em]
\hline
\Longrightarrow\ \ \ \ \ 7\cdot 11^{\large 2n+\color{#c00}3}&\equiv 3^{\large 4n+\color{#c00}3}\quad\ P(n\!+\!\color{#c00}1),
\ \ \rm by \ \,\color{#0a0}{CPR}^{\phantom{|^|}}\end{align}\qquad $$
If congruences are unfamiliar we can preserve the arithmetical essence of this simple proof by using an analogous product rule for divisibility (DPR), as explained here.
Or as here use Binomial Theorem on $\,(1\!+\!10)^{2n+1}$ and $(-1\!+\!10)^{4n-1}$ (or $\,(1\!+\!80)^n\,$ in $3x)$
Remark $ $ All these methods do in fact use induction (on $n),\,$ but it may be hidden (encapsulated) in the proof of a theorem that is invoked, e.g. the Factor Theorem or Binomial theorem, or the Congruence Power Rule $\,a\equiv b\Rightarrow\, a^n\equiv b^n$.