Hint $\ $ Conceptually, the induction is simply the first two terms of BT = Binomial Theorem
${\rm mod}\,\ 26^2\!:\ \color{#c00}{(1\!+\!26)^{n+1}}\!\equiv 1\!+\!(n\!+\!1)26\equiv \color{#0a0}{26n\!+\!27}\,\Rightarrow\, 13^2\mid26^2\mid \color{#c00}{27^{n+1}}\!\color{#0a0}{-\!26n\!-\!27}$
Remark $ $ For completeness, below is a simple inductive proof of the first two terms of BT, using $\,\color{#0af}{\rm CPR}=$ Congruence Product Rule
$\begin{align}{\rm mod}\,\ \color{#c00}{a^2}\!:\,\ (1+ a)^{\large n}\ \, \ \ \equiv&\,\ \ 1 + na\qquad\qquad\,\ \ \ \ \ {\rm i.e.}\ \ P(n)\\
\Rightarrow\ \ (1+a)^{\color{}{\large n+1}}\! \equiv &\ (1+na)(1 + a)\quad\ \ \ \ {\rm by}\ \ 1+a \ \ \rm times\ prior\ \&\ \color{#0af}{\rm CPR}\\
\equiv &\,\ \ 1+ na+a+n\color{#c00}{a^2},\, \ \text{but }\ \color{#c00}{a^2\equiv 0}\ \ \rm so\\[1pt]
\equiv &\,\ \ 1\!+\! (n\!+\!1)a\qquad\ \ \ \ \ \ {\rm i.e.}\ \ P(\color{}{n\!+\!1})
\end{align}$
Generalization $ $ Using the above idea it is easy to generalize, e.g. from this answer
$\!\begin{align}\rm{\bf Theorem}\ \ \forall n\in\Bbb N\!:\ d\mid f(n) = a^n\! + b\:\!n + c &\rm \iff d\mid \color{blue}{(a\!-\!1)^2},\, \color{brown}{a\!+\!b\!-\!1},\, \color{darkorange}{1\!+\!c}\\ &\rm \iff d\mid f(0),\,f(1),\,f(2)\end{align}$