-1

I am wondering how to prove both of this by induction: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^n}\leq 1+\frac{n}{2}$ In general, how should I think of how to prove such an inductive step for these types of inequalities? If there is any other way to prove please feel free. Any help would be appreciated.

3 Answers3

1

Induction

When $n=1$, $1+\frac{1}{2}\geq 1+\frac{1}{2}$, the inequality holds.

Suppose the inequality holds when $n=k$, where $k \in \mathbb{N}$. $$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^k}\geq 1+\frac{k}{2}$$

When $n=k+1$,

$LHS=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^k})+(\frac{1}{2^k+1}+\frac{1}{2^k+2}+\cdots+\frac{1}{2^{k+1}})\\ \geq(1+\frac{k}{2})+(\frac{1}{2^{k+1}}\cdot2^k)=1+\frac{k+1}{2}=RHS$

The inequality also holds.

Another Solution

$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}+1}+\frac{1}{2^{n-1}+2}+\cdots+\frac{1}{2^n}\\ \geq 1+ \frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\cdots+\frac{1}{2^n}+\frac{1}{2^n}+\cdots+\frac{1}{2^n}\\ =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}\\ =1+\frac{n}{2}$

0

$\sum\limits_{n=2^{i}+1}^{2^{i+1}}\frac{1}{n}\geq \sum\limits_{n=2^{i}+1}^{2^{i+1}}\frac{1}{2^{i+1}}=\frac{1}{2}$, therefore $\sum\limits_{n=1}^{2^k}\frac{1}{n}=1+\sum\limits_{i=0}^{k-1}\sum\limits_{j=2^{i}+1}^{2^{i+1}}\frac{1}{j}\geq 1+\frac{k}{2}$.

0

Another solution using harmonic numbers

$$\sum_{i=1}^{2^n}\frac 1 i=H_{2^n}$$

Using the asymptotics, $$H_{2^n}=\gamma + n \log(2)+\frac 1 {2^{n+1 }}-\frac 13 \frac 1 {2^{2(n+1) }}+\cdots$$ $\log(2) > \frac 12$ so, as soon as $n>2$ the inequality holds.

For $n=2$ the lhs is $\frac{25}{12}=2+\frac 1 {12}$ while the rhs is $2$.