For
$ A:= M_{\mathcal{A}}(< \cdot,\cdot>); B:= M_{\mathcal{B}}(< \cdot,\cdot>) $ with $\mathcal{A} = (1, x, x^2,x ^3); \mathcal{B} = (1+x^2, x-2x^2, -2x+x^2+x^3, 1+x^3)$ and $<f; g>:=\int_{-1}^1f(x)g(x)\,dx$
I found
$ A = \begin{pmatrix} 2 & 0 & \frac{2}{3} & 0 \\ 0 & \frac{2}{3} & 0 & \frac{2}{5} \\ \frac{2}{3} & 0 & \frac{2}{5} & 0 \\ 0 & \frac{2}{5} & 0 & \frac{2}{7}\end{pmatrix}, B = \begin{pmatrix} \frac{56}{15} & -\frac{32}{15} & \frac{16}{15} & \frac{8}{3} \\ -\frac{32}{15} & \frac{34}{15} & -\frac{26}{15} & -\frac{14}{15} \\ \frac{16}{15} & -\frac{26}{15} & \frac{184}{105} & \frac{16}{105} \\ \frac{8}{3} & -\frac{14}{15} & \frac{16}{105} & \frac{16}{7}\end{pmatrix}$
I hope these are right. Now I have to find matrices $S \in GL_4(\mathbb{R})$ and $Q \in GL_4(\mathbb{R})$ which satisfy $B = S^t AS$ and $A=Q^tQ$. But I don't have any clue how to find those. Can someone point me into the right direction?