I tried to prove: \begin{align*} &\lim_{x \to c} \log_b(x)=\log_b(c)\\ &\log_b(c) - \epsilon < \log_b(x) < \log_b(c) + \epsilon \\ &b^{\log_b(c) - \epsilon }<b^{\log_b(x)}<b^{\log_b(c) + \epsilon} \\ &c b^{- \epsilon }<x<c b^{\epsilon} \\ &c b^{- \epsilon }-c<x-c<c b^{\epsilon}-c \\ &\delta \leq \min\{c b^{- \epsilon }-c,c b^{\epsilon}-c\}= c\min\{b^{- \epsilon }-1,b^{\epsilon}-1\}\\ \end{align*}
$$c\min\{b^{- \epsilon }-1,b^{\epsilon}-1\}=c(b^{-\epsilon}-1)$$ and as said in $\min$ in epsilon-delta the minimum should be used
However: \begin{align*} b^{-\epsilon} -1&>0 \\ b^{-\epsilon} &> 1 \\ \log(b^{-\epsilon}) &>\log(1) \\ -\epsilon \log(b) &>0\\ -\epsilon&>0\\ \epsilon &< 0 \end{align*} (contradiction)
So do I use: $$\delta \leq b^\epsilon -1$$