Possible duplicate of: Epsilon delta proof min
see: https://math.libretexts.org/Bookshelves/Calculus/Book:_Calculus_(Apex)/01:_Limits/1.02:_Epsilon-Delta_Definition_of_a_Limit where the following example is featured.
Prove: $$\lim\limits_{x \to 4} \sqrt{x} = 2$$
\begin{align*} 2 -\varepsilon &< \sqrt{x} < 2 + \varepsilon \\ (2 -\varepsilon)^2 &< x < (2 + \varepsilon)^2 \\ 4- 4\varepsilon +\varepsilon^2 &< x < 4 + 4\varepsilon + \epsilon^2 \\ 4- (4\varepsilon -\varepsilon^2) &< x < 4 + (4\varepsilon + \varepsilon^2)\\ \end{align*}
Here $\delta$ has two possible values $4\varepsilon - \varepsilon^2$ and $4\varepsilon + \varepsilon^2$. Both values lead to the conclusion that $\lim\limits_{x \to 4} \sqrt{x} = 2$, so which should be used?(Shown to be an incorrect statement in the answers)
Arguments for $\delta \leq 4\varepsilon + \varepsilon^2$.
$\delta > 0 \forall \varepsilon$ = delta is positive for all epsilon
$\delta \leq 4\varepsilon - \varepsilon^2 < 4\varepsilon + \varepsilon^2$ i.e. it is larger than $4\varepsilon - \varepsilon^2$ so delta covers more values.
Arguments for $\delta \leq 4\varepsilon - \varepsilon^2$
As proven by Limits with epsilon-delta - the accepted answer, it doesn't matter if \epsilon has an upper bound (in this case, $\varepsilon \lt 4$) because:
- epsilon should be small
- if there exist a delta for $\varepsilon \in (0,t)$ the same delta works for $\varepsilon \geq t$
Why is the minimum used?