For $x > 0,$ the left hand side of the proposed inequality tends to $0$ as $y \to 0,$ so the inequality cannot hold if $x > 1,$ and of course it makes no sense if $x = 1.$ We must suppose, therefore, that $0 < x < 1.$
If $y = 1 \pm t,$ where $t \neq 0,$ then what has to be proved is:
\begin{equation}
\label{3808663:eq:1}\tag{$1$}
\coth x - t\coth(tx) < \frac{4x}{1 - x^4} \quad (0 < x < 1, \ 0 < t < 1).
\end{equation}
We have
$$
\lim_{t \to 0}(t\coth(tx)) = \lim_{t \to 0}\frac{2t}{e^{2tx} - 1} = \frac1x,
$$
so when $y = 1,$ although \eqref{3808663:eq:1} does not strictly make sense, it is reasonable to interpret it as:
$$
\coth x - \frac1x < \frac{4x}{1 - x^4}.
$$
In fact (this will be proved later):
\begin{equation}
\label{3808663:eq:2}\tag{$2$}
\frac1u < \coth u < u + \frac1u \quad (0 < u < 1).
\end{equation}
Using both parts of \eqref{3808663:eq:2}, we deduce:
\begin{equation}
\label{3808663:eq:3}\tag{$3$}
\coth x - t\coth(tx) < \coth x - \frac1x < x \quad (0 < x < 1, \ 0 < t < 1).
\end{equation}
This inequality \eqref{3808663:eq:3} is much stronger than the required inequality \eqref{3808663:eq:1}, because of course:
$$
x < 4x < \frac{4x}{1 - x^4} \quad (0 < x < 1).
$$
It remains to prove \eqref{3808663:eq:2}. The second part is proved here: Is this inequality true? $\coth x\leq x^{-1}+x$. The proof is short, so I'll copy it out:
From the series expansion of the exponential function, if $u > 0$, then:
$$
\frac{e^{2u}-1}2 > u + u^2,
$$
therefore:
$$
\coth u = 1 + \frac2{e^{2u}-1} < 1 + \frac1{u + u^2} = 1 + \frac1u - \frac1{1 + u} = \frac{u}{1 + u} + \frac1{u} < u + \frac1u.
$$
For the first part of \eqref{3808663:eq:2}, we have:
\begin{align*}
\coth u > \frac1u & \iff \frac2{e^{2u}-1} > \frac1u - 1 \\
& \iff \frac{e^{2u} - 1}2 < \frac{u}{1 - u} \\
& \iff e^{2u} < \frac{1 + u}{1 - u} \quad (0 < u < 1).
\end{align*}
The last inequality is proved in several ways here: prove that $ -2 + x + (2+x)e^{-x}>0 \quad \forall x>0$ . I'll copy out a short proof I gave here:
The curve $y = \tfrac{1}{x}$ lies above the tangent at $(1, 1),$ therefore:
$$
2u < \int_{1-u}^{1+u}\frac{dx}{x} = \log\frac{1 + u}{1 - u} \quad (0 < u < 1).
$$
This completes the proof of \eqref{3808663:eq:2}, therefore \eqref{3808663:eq:3}, therefore \eqref{3808663:eq:1}.