11

How to tackle

$$I=\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx\ ?$$

This integral came up while I was working on finding $\sum_{n=1}^\infty\frac{4^nH_n}{n^4{2n\choose n}}$.

First attempt: By writing $\text{Li}_2(x^2)=-\int_0^1\frac{x^2\ln(y)}{1-x^2y}dy$ we have

$$I=-\int_0^1\ln(y)\left(\int_0^1\frac{x\arcsin^2(x)}{1-x^2y}dx\right)dy$$

and Mathematica gave a complicated expression for the inner integral and that made me stop.

Second attempt: $x=\sin\theta$

$$I=\int_0^{\pi/2}\theta^2\cot\theta\ \text{Li}_2(\sin^2\theta)d\theta$$

$$=\sum_{n=1}^\infty\frac{1}{n^2}\int_0^{\pi/2}\theta^2\cot\theta \sin^{2n}(\theta) d\theta$$

and I have no idea how to continue. Any suggestion?

Thanks


How $I$ appeared in my calculations:

Since

$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$

we can write

$$\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}=\sum_{n=1}^\infty\frac{2^{2n}x^{n}}{n{2n\choose n}}$$

Divide both sides by $x$ then $\int_0^y$ we have

$$\sum_{n=1}^\infty\frac{2^{2n}y^n}{n^2{2n\choose n}}=2\int_0^y \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

Next multiply both sides by $\frac{\text{Li}_2(y)}{y}$ then $\sum_{n=1}^\infty$ and use that $\int_0^1 y^{n-1}\text{Li}_2(y)dy=\frac{\zeta(2)}{n^2}-\frac{H_n}{n^2}$ we get

$$\sum_{n=1}^\infty\frac{\zeta(2)2^{2n}}{n^3{2n\choose n}}-\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^4{2n\choose n}}=2\int_0^1\int_0^y \frac{\arcsin \sqrt{x}\text{Li}_2(y)}{y\sqrt{x}\sqrt{1-x}}dxdy$$

$$=2\int_0^1 \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{\text{Li}_2(y)}{y}dy\right)dx$$ $$=2\int_0^1 \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\zeta(3)-\text{Li}_3(x)\right)dx$$

$$\overset{\sqrt{x}\to x}{=}4\int_0^1\frac{\arcsin x}{\sqrt{1-x^2}}(\zeta(3)-\text{Li}_3(x^2))dx$$

$$\overset{\text{IBP}}{=}4\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$$

Substitute $\sum_{n=1}^\infty\frac{\zeta(2)2^{2n}}{n^3{2n\choose n}}=15\ln(2)\zeta(4)-\frac72\zeta(2)\zeta(3)$ we get

$$\sum_{n=1}^\infty\frac{2^{2n}H_n}{n^4{2n\choose n}}=15\ln(2)\zeta(4)-\frac72\zeta(2)\zeta(3)-4\int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$$

Ali Shadhar
  • 25,498
  • I'm not at home so I can't do the math right now, but would the formula $\operatorname{Li}_2(z^2) = 2\operatorname{Li}_2(-z)+2\operatorname{Li}_2(z)$ maybe help? – Casimir Rönnlöf Aug 18 '20 at 10:05
  • 6
    The result is $$I = -4 \text{Li}_5\left(\frac{1}{2}\right)-\frac{13 \pi ^2 \zeta (3)}{48}+\frac{31 \zeta (5)}{8}+\frac{\log ^5(2)}{30}-\frac{2}{9} \pi ^2 \log ^3(2)+\frac{13}{360} \pi ^4 \log (2)$$ – pisco Aug 18 '20 at 11:26
  • @pisco nice . Were you able to prove it? – Ali Shadhar Aug 18 '20 at 11:31
  • @AliShather Yes. But I am afraid you are less interested in my approach. – pisco Aug 18 '20 at 11:44
  • @pisco If its not interesting for me, it could be interesting for others for sure :) – Ali Shadhar Aug 18 '20 at 11:55
  • 1
    His approach is completely outlined in the link I offered yesterday. It will be better if one read and comprehend it before asking similar questions. – Infiniticism Aug 18 '20 at 12:53
  • @User 628759 I didn't know that this link belongs to pisco and thought he has a different way. – Ali Shadhar Aug 18 '20 at 13:03
  • @User 628759 I don't need to study a whole article to solve a problem or two. Plus I don't like complicated techniques that involve too many results , lemma and theorems. I more into solutions with art and elegance using techniques known by most readers. – Ali Shadhar Aug 18 '20 at 13:16
  • 2
    @AliShather That's also good. But it seems common that power of elementary techniques is often limited compared to more advanced ones, which are also artistic and elegant (from a higher point of view). – Infiniticism Aug 18 '20 at 13:20
  • @User 628759 with hard work and insistnace we can push limitations a bit further. – Ali Shadhar Aug 18 '20 at 13:24
  • 1
    @AliShather With hard work and insistance on comprehending more advanced theories , one may push limitations much further. – Infiniticism Aug 18 '20 at 13:27
  • @User 628759 again I focus on techniques known by most readers as they are more understandable and acceptable for them. – Ali Shadhar Aug 18 '20 at 13:32
  • 8
    @AliShather When solving math problems, there is often a compromise between elegance and generality. Your questions/answers on this site indicate you prefer elegant approaches. However, magical tricks often do not work for every problem. My approach (given in link above) is algorithmic and tedious, but it has great generality: can solve ~95% of your past questions with a single, unchanging method. It is just a matter of taste, whether one prefers a miraculous method with limited applicability, or a mechanical way with great generality. – pisco Aug 18 '20 at 13:33
  • @pisco I totally agree with you and I highly respect your hard work. As you said I'm more into elegant solutions and its a matter of taste. You welcome to post any of your approaches and my openion in a solution does not matter because this site is for all not just for me. Don't let my tags limit your approaches. All solutions are welcome here. – Ali Shadhar Aug 18 '20 at 13:42
  • @AliShather I don't know how to proceed now, but using the formula one gets that $I = 4\int_0^1 \frac{\operatorname{Li}_2(x)\arcsin^2(x)}{x}$ – Casimir Rönnlöf Aug 18 '20 at 18:34

2 Answers2

6

Here is a solution for:

$$\sum _{k=1}^{\infty }\frac{4^kH_k}{k^4\binom{2k}{k}}=-\frac{31}{2}\zeta \left(5\right)+3\zeta \left(2\right)\zeta \left(3\right)+16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$+2\ln \left(2\right)\zeta \left(4\right)+\frac{16}{3}\ln ^3\left(2\right)\zeta \left(2\right)-\frac{2}{15}\ln ^5\left(2\right),$$ $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}=\frac{31}{4}\zeta \left(5\right)+\frac{3}{2}\zeta \left(2\right)\zeta \left(3\right)-16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$-2\ln \left(2\right)\zeta \left(4\right)+\frac{8}{3}\ln ^3\left(2\right)\zeta \left(2\right)+\frac{2}{15}\ln ^5\left(2\right).$$

Note that: $$\arcsin ^4\left(x\right)=\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^2\binom{2k}{k}}x^{2k}-\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^k}{k^4\binom{2k}{k}}x^{2k}$$ $$2\int _0^1\frac{\arcsin ^4\left(x\right)}{x}\:dx=\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}-\frac{3}{2}\sum _{k=1}^{\infty }\frac{4^k}{k^5\binom{2k}{k}}$$ $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}=-\frac{16}{3}\int _0^{\frac{\pi }{2}}x^3\ln \left(\sin \left(x\right)\right)\:dx-\frac{16}{3}\int _0^{\frac{\pi }{2}}x\ln ^3\left(\sin \left(x\right)\right)\:dx,$$ where the first integral is easy to calculate due to the fourier series expansion of $\ln \left(\sin \left(x\right)\right)$ and the other integral can be found evaluated here, using their closed-forms the previous announced result follows.

Now let's find the other series, consider the result also found in the previous link: $$\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx=-\frac{155}{128}\zeta \left(5\right)-\frac{1}{32}\zeta \left(2\right)\zeta \left(3\right)+\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$+\frac{49}{32}\ln \left(2\right)\zeta \left(4\right)-\frac{2}{3}\ln ^3\left(2\right)\zeta \left(2\right)-\frac{1}{120}\ln ^5\left(2\right),$$ and note that: $$\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx=\frac{1}{2}\int _0^1\frac{\ln ^2\left(x\right)\ln \left(1-x^2\right)\arcsin \left(x\right)}{\sqrt{1-x^2}}\:dx$$ $$=\frac{1}{32}\sum _{k=1}^{\infty }\frac{4^k}{k\binom{2k}{k}}\int _0^1x^{k-1}\ln ^2\left(x\right)\ln \left(1-x\right)\:dx$$ $$\sum _{k=1}^{\infty }\frac{4^kH_k}{k^4\binom{2k}{k}}=-16\int _0^{\frac{\pi }{2}}x\ln ^2\left(\sin \left(x\right)\right)\ln \left(\cos \left(x\right)\right)\:dx-\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(2\right)}}{k^3\binom{2k}{k}}-\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(3\right)}}{k^2\binom{2k}{k}}$$ $$+\zeta \left(2\right)\sum _{k=1}^{\infty }\frac{4^k}{k^3\binom{2k}{k}}+\zeta \left(3\right)\sum _{k=1}^{\infty }\frac{4^k}{k^2\binom{2k}{k}}.$$ The last $2$ series are well-known while the other harmonic series can be found evaluated in large steps here: $$\sum _{k=1}^{\infty }\frac{4^kH_k^{\left(3\right)}}{k^2\binom{2k}{k}}=\frac{217}{8}\zeta \left(5\right)-\frac{9}{2}\zeta \left(2\right)\zeta \left(3\right)-16\operatorname{Li}_5\left(\frac{1}{2}\right)$$ $$-\frac{19}{2}\ln \left(2\right)\zeta \left(4\right)+\frac{8}{3}\ln ^3\left(2\right)\zeta \left(2\right)+\frac{2}{15}\ln ^5\left(2\right),$$ Using these results the closed-form mentioned in the beginning also follows.

And that's all there is to it.

Jorge Layja
  • 1,101
1

I wasn't able to find a closed-form for this, but I was able to simplify it to

$$\frac{\pi^2}{48} \left( 2\pi^2 \ln(2) - 7\zeta(3) \right) - \sum_{n=1}^{\infty} \frac{2^{2n-2} H_n}{n^4 \binom{2n}{n}}$$


Evaluate $$I = \int_0^1\frac{\text{Li}_2(x^2)\arcsin^2(x)}{x}dx$$

Expanding $\arcsin^2(x)$ using the power series yields: $$\int_0^1 \text{Li}_2(x^2) \sum_{n=1}^{\infty} \frac{2^{2n-1}}{n^2 \binom{2n}{n}} x^{2n-1} dx$$

Swapping integration and sum:

$$\sum_{n=1}^{\infty} \frac{2^{2n-1}}{n^2 \binom{2n}{n}}\int_0^1 \text{Li}_2(x^2) x^{2n-1} dx$$

Making the substitution $u = x^2$:

$$\sum_{n=1}^{\infty} \frac{2^{2n-2}}{n^2 \binom{2n}{n}}\int_0^1 \text{Li}_2(u) u^{n-1}du$$

The inner integral would be $$\int_0^1 \sum_{k=1}^{\infty} \frac{u^k}{k^2} u^{n-1} du = \sum_{k=1}^{\infty} \frac{1}{k^2} \frac{1}{k+n} = \frac{\pi^2}{6n} - \frac{H_n}{n^2}$$

Which makes the overall integral into $$\sum_{n=1}^{\infty} \frac{2^{2n-2}}{n^2 \binom{2n}{n}}\left(\frac{\pi^2}{6n} - \frac{H_n}{n^2}\right)$$

Or splitting the sums up: $$\frac{\pi^2}{24}\sum_{n=1}^{\infty} \frac{2^{2n}}{n^3 \binom{2n}{n}} - \sum_{n=1}^{\infty} \frac{2^{2n-2} H_n}{n^4 \binom{2n}{n}}$$

Let $f(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{n^3 \binom{2n}{n}}$. Then $f'(x) = 2\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n^2 \binom{2n}{n}} = \frac{4\arcsin^2\left( \frac{x}{2} \right)}{x}$

Then the integral to solve for the first sum is $$\int_{0}^{2}\frac{4\arcsin^{2}\left(\frac{x}{2}\right)}{x}dx = 4\int_{0}^{1}\frac{\arcsin^{2}\left(x\right)}{x}dx$$

Making the substitution $x \to \arcsin(x)$ yields $$4\int_0^{\pi/2} x^2 \cot(x) dx$$

This can be done by complex methods (substituting $u = e^{2ix}-1$ and then doing partial fractions) to get the indefinite integral in closed form. Then the integral would be $$\pi^2 \ln(2) - \frac{7}{2}\zeta(3)$$

This then makes the original integral to $$\frac{\pi^2}{48} \left( 2\pi^2 \ln(2) - 7\zeta(3) \right) - \sum_{n=1}^{\infty} \frac{2^{2n-2} H_n}{n^4 \binom{2n}{n}}$$


I will start from your second attempt: $$I=\sum_{n=1}^\infty\frac{1}{n^2}\underbrace{\int_0^{\pi/2}x^2\cot x \sin^{2n}(x) dx}_{I_n}$$

Using integration by parts, $I_n$ is equal to $$I_n = x^2 \frac{\sin^{2n}(x)}{2n} \Big|^{\pi/2}_0 - \int_0^{\pi/2} x \frac{\sin^{2n}(x)}{n} dx$$

Which simplifies to $$\frac{\pi^2}{8n} - \frac{1}{n} \int_0^{\pi/2} x\sin^{2n}(x) dx$$

Splitting the $\sin^{2n}(x)$ as $\sin^{2n-1}(x)\sin(x)$ so that I can integrate by parts:

$$J_n = \int_0^{\pi/2} x\sin^{2n}(x) dx = \int_0^{\pi/2} \sin^{2n-1}(x) x \sin(x)dx$$

Integrating by parts:

$$1-\int_{0}^{\frac{\pi}{2}}\left(-x\cos\left(x\right)+\sin\left(x\right)\right)\left(2n-1\right)\cos\left(x\right)\sin\left(x\right)^{\left(2n-2\right)}dx$$

Separating and evaluating gives the relation $$J_n = \frac{1}{2n} - (2n-1) J_n + (2n-1)J_{n-1}$$

which has the solution $$J_n = \frac{1}{4n^2} + \frac{2n-1}{2n} J_{n-1}$$ with $J_0 = \frac{\pi^2}{8}$

The explicit solution to this is $$\frac{\binom{2n}{n}}{4^n}\left(\frac{\pi^2}{8} + \sum_{m=1}^{n} \frac{4^{m-1}}{\binom{2m}{m} m^2}\right)$$

Which then makes $I_n$ $$\frac{\pi^2}{8n} - \frac{1}{n} \frac{\binom{2n}{n}}{4^n}\left(\frac{\pi^2}{8} + \sum_{m=1}^{n} \frac{4^{m-1}}{\binom{2m}{m} m^2} \right)$$

The original integral/sum is then $$\sum_{n=1}^{\infty} \frac{1}{n^2} \left( \frac{\pi^2}{8n} - \frac{1}{n} \frac{\binom{2n}{n}}{4^n}\left(\frac{\pi^2}{8} + \sum_{m=1}^{n} \frac{4^{m-1}}{\binom{2m}{m} m^2} \right) \right)$$

This can be simplified to $$\frac{\pi^2}{8} \zeta(3) - \frac{\pi^2}{8}\underbrace{\sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{4^n n^3}}_{S_1} - \underbrace{\sum_{n=1}^{\infty}\frac{\binom{2n}{n}}{4^n n^3} \sum_{m=1}^{n} \frac{4^{m-1}}{\binom{2m}{m} m^2}}_{S_2} \tag 1$$

Focusing on $S_2$, $\sum_{n=1}^{\infty}\frac{\binom{2n}{n}}{4^n n^3} \sum_{m=1}^{n} \frac{4^{m-1}}{\binom{2m}{m} m^2}$: This can be rewritten as $$\sum_{m=1}^{\infty} \frac{4^{m-1}}{\binom{2m}{m} m^2}\left(\sum_{n=1}^{\infty}\frac{\binom{2n}{n}}{4^n n^3} - \sum_{n=1}^{m-1} \frac{\binom{2n}{n}}{4^n n^3} \right) = S_1\underbrace{\sum_{m=1}^{\infty} \frac{4^{m-1}}{\binom{2m}{m} m^2}}_{S_3} - \sum_{m=1}^{\infty} \frac{4^{m-1}}{\binom{2m}{m} m^2}\sum_{n=1}^{m-1} \frac{\binom{2n}{n}}{4^n n^3} $$

$S_3$ can be simplified using the series expansion of $\arcsin^2(x)$ to get $S_3 = \frac{\pi^2}{8}$

This then simplifies the overall integral/sums to $$\frac{\pi^2}{8} \zeta(3) - \frac{\pi^2}{4}\sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{4^n n^3} + \sum_{m=1}^{\infty} \frac{4^{m-1}}{\binom{2m}{m} m^2}\sum_{n=1}^{m-1} \frac{\binom{2n}{n}}{4^n n^3} \tag 2$$

Using Mathematica, I found $S_1 = \frac{-\pi^2 \ln(4) + \ln^3(4) + 12\zeta(3)}{6}$, but don't have a proof for this. I feel like there might be a proof of this somewhere on MSE, but unfortunately Approach0 is down right now (so I can't search as effectively).

  • (+1) Thank you for the great efforts and for finding $I_n$. Still, the result you got is already given in the post. About $S_1$, its manageable I can show you how if you like. – Ali Shadhar Aug 24 '20 at 09:51