how to solve $$\mathcal{J(a)}=\int _0^1\frac{\ln \left(1+x\right)}{a^2+x^2}\:\mathrm{d}x$$
i used the differentiation under the integral and got
\begin{align} \mathcal{J(b)}&=\int _0^1\frac{\ln \left(1+bx\right)}{a^2+x^2}\:\mathrm{d}x \\[3mm] \mathcal{J'(b)}&=\int _0^1\frac{x}{\left(a^2+x^2\right)\left(1+bx\right)}\:\mathrm{d}x \\[3mm] &=\frac{a^2b}{1+a^2b^2}\int _0^1\frac{1}{a^2+x^2}\:\mathrm{d}x+\frac{1}{1+a^2b^2}\int _0^1\frac{x}{a^2+x^2}\:\mathrm{d}x-\frac{b}{1+a^2b^2}\int _0^1\frac{1}{1+bx}\:\mathrm{d}x \\[3mm] &=\frac{ab}{1+a^2b^2}\operatorname{atan} \left(\frac{1}{a}\right)+\frac{1}{2}\frac{\ln \left(1+a^2\right)}{1+a^2b^2}-\frac{\ln \left(a\right)}{1+a^2b^2}-\frac{\ln \left(1+b\right)}{1+a^2b^2} \end{align} But we know that $\mathcal{J}(1)=\mathcal{J(a)}$ and $\mathcal{J}(0)=0$ \begin{align} \int_0^1\mathcal{J'(b)}\:\mathrm{d}b&=a\:\operatorname{atan} \left(\frac{1}{a}\right)\int _0^1\frac{b}{1+a^2b^2}\:\mathrm{d}b+\frac{\ln \left(1+a^2\right)}{2}\int _0^1\frac{1}{1+a^2b^2}\:\mathrm{d}b-\ln \left(a\right)\int _0^1\frac{1}{1+a^2b^2}\:\mathrm{d}b \\ &-\int _0^1\frac{\ln \left(1+b\right)}{1+a^2b^2}\:\mathrm{d}b \\[3mm] \mathcal{J(a)}&=\frac{1}{2a}\operatorname{atan} \left(\frac{1}{a}\right)\ln \left(1+a^2\right)+\frac{1}{2a}\ln \left(1+a^2\right)\operatorname{atan} \left(a\right)-\frac{1}{a}\ln \left(a\right)\:\operatorname{atan} \left(a\right)-\underbrace{\int _0^1\frac{\ln \left(1+b\right)}{1+a^2b^2}\:\mathrm{d}b}_{\mathcal{I}} \end{align} but how to calculate ${\mathcal{I}}$, i tried using the same technique but it didnt work