$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{0}^{1}{\ln\pars{1 + x} \over 1 + a^{2}x^{2}}\,\dd x:\ {\large ?}.\qquad
a \in {\mathbb R}}$.
I believe the proposed OP solution $\ds{\pars{~{1 \over a}\,\Im\pars{\chi_2\pars{\ic a}
-{\rm Li}_{2}\pars{1\ +\ a\ic \over 2}}~}}$ is not correct. Albeit it agrees at
$\ds{a = 1}$, we can evaluate it for several values and they yield different values between LHS and RHS.
\begin{align}&\color{#c00000}{\int_{0}^{1}%
{\ln\pars{1 + x} \over 1 + a^{2}x^{2}}\,\dd x}
=\Im\int_{0}^{1}{\ln\pars{1 + x} \over -\ic + \verts{a}x}\,\dd x
=\Im\int_{1}^{2}{\ln\pars{x} \over -\ic - \verts{a} + \verts{a}x}\,\dd x
\\[3mm]&=\Im\bracks{-\,{1 \over 1 + \ic\verts{a}}
\int_{1}^{2}{\ln\pars{x} \over 1 - \verts{a}x/\pars{\ic + \verts{a}}}\,\dd x}
\\[3mm]&=\Im\bracks{-\,{1 \over 1 + \ic\verts{a}}
\int_{1}^{2}{\ln\pars{x} \over 1 - \mu x}\,\dd x}\,,
\qquad\qquad
\mu \equiv {\verts{a} \over \ic + \verts{a}}
\end{align}
With
$\ds{\mu x\equiv t\ \imp\ x = {t \over \mu}\quad\mbox{and}\quad
\dd x={\ic + \verts{a} \over \verts{a}}\,\dd t}$
\begin{align}&\color{#c00000}{\int_{0}^{1}%
{\ln\pars{1 + x} \over 1 + a^{2}x^{2}}\,\dd x}
={1 \over \verts{a}}\,
\Im\bracks{-\int_{\mu}^{2\mu}%
{\ln\pars{t/\mu} \over 1 - t}\,\dd t}
\\[3mm]&={1 \over \verts{a}}\,\Im\bracks{%
\ln\pars{1 - 2\mu}\ln\pars{2} - \int_{\mu}^{2\mu}{\ln\pars{1 - t} \over t}\,\dd t}
\\[3mm]&={1 \over \verts{a}}\,\Im\bracks{%
\ln\pars{1 - 2\mu}\ln\pars{2} + {\rm Li}_{2}\pars{2\mu} - {\rm Li}_{2}\pars{\mu}}
\end{align}
$$\color{#c00000}{\int_{0}^{1}%
{\ln\pars{1 + x} \over 1 + a^{2}x^{2}}\,\dd x}
={1 \over \verts{a}}\,\Im\bracks{%
\ln\pars{\ic - \verts{a} \over \ic + \verts{a}}\ln\pars{2}
+{\rm Li}_{2}\pars{2\verts{a} \over \ic + \verts{a}}
-{\rm Li}_{2}\pars{\verts{a} \over \ic + \verts{a}}}
$$
\begin{align}&\color{#66f}{\large\int_{0}^{1}%
{\ln\pars{1 + x} \over 1 + a^{2}x^{2}}\,\dd x}
\\[3mm]&=\color{#66f}{\large2\ln\pars{2}\,{\arctan\pars{a} \over a}
+{1 \over \verts{a}}\,\Im\bracks{%
{\rm Li}_{2}\pars{2\verts{a} \over \ic + \verts{a}}
-{\rm Li}_{2}\pars{\verts{a} \over \ic + \verts{a}}}}
\end{align}