Given the sequence $a_n \mspace{10mu},\mspace{10mu}a_{n+1}=\sin(a_n)\mspace{10mu} and \mspace{10mu} a_1=1. $
Find if the series $\sum_{k=1}^{\infty}a_k$ converges or diverges.
First I found that $a_n$ is monotone decreasing sequence. If $a_n\in[0;\pi/2]$ then $\sin(a_n)\leqslant a_n$. And $a_n\leq 0$.
$\lim_{n\rightarrow \infty}a_n=0.$
Ratio test gives $\lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=1$. More investigation of the series is required.