You already find the first term $n\pi$ for $x_n$ (with $0=x_0<x_1<...$). So, let's denote $x_n=n\pi+y_n$ with $y_n=\mathcal{o}(n)$ and $0<y_n<\frac{\pi}{2}$.
$$\begin{align}
&\Longrightarrow \cot(y_n)=n\pi+y_n \xrightarrow{n\to+\infty}+\infty \\
&\Longrightarrow y_n \xrightarrow{n\to+\infty} 0
\end{align}$$
So $y_n=\mathcal{o}(1)$ and we can compute the series expansion of $\cot(y_n)$ when $y_n \to 0$, we have
$$\begin{align}
n\pi+y_n=\cot(y_n) = \frac{1}{y_n}+\mathcal{O}(y_n) &\Longleftrightarrow n\pi = \frac{1}{y_n}+\mathcal{O}(y_n)\\
&\Longleftrightarrow y_n = \frac{1}{n\pi + \mathcal{O}(y_n)}\\\
&\Longleftrightarrow y_n = \frac{1}{n\pi } \left(1 + \mathcal{O}(\frac{y_n}{n}) \right)\\\
&\Longleftrightarrow y_n = \frac{1}{\pi}\cdot\frac{1}{n}+\mathcal{o}\left(\frac{1}{n} \right)\\
\end{align}$$
We obtain then the second term $\frac{1}{\pi}\cdot\frac{1}{n}$.
Let's denote $x_n=n\pi+ \frac{1}{\pi}\cdot\frac{1}{n}+z_n$ with $z_n=\mathcal{o}\left(\frac{1}{n} \right)$. We have
$$\begin{align}
n\pi+\frac{1}{\pi}\cdot\frac{1}{n}+z_n &=\cot\left(\frac{1}{\pi}\cdot\frac{1}{n}+z_n \right) \\&=\frac{1}{\frac{1}{\pi}\cdot\frac{1}{n}+z_n} -\frac{1}{3}\left( \frac{1}{\pi}\cdot\frac{1}{n}+z_n \right)+\mathcal{o}\left( \frac{1}{n} \right)\\
&=\pi n \left(1+ \pi n z_n \right)^{-1}-\frac{1}{3}\left( \frac{1}{\pi}\cdot\frac{1}{n}+z_n \right)+\mathcal{o}\left( \frac{1}{n} \right)\\
&=\pi n \left(1- \pi n z_n +\mathcal{o}(n^2z_n^2) \right)-\frac{1}{3\pi}\cdot\frac{1}{n}+\mathcal{o}\left( \frac{1}{n} \right)\\
&=\pi n - \pi^2 n^2 z_n +\mathcal{o}(n^2z_n)-\frac{1}{3\pi}\cdot\frac{1}{n}+\mathcal{o}\left( \frac{1}{n} \right)\tag{1}\\
\end{align}$$
Then
$$\begin{align}
(1) &\Longleftrightarrow \frac{4}{3\pi}\cdot\frac{1}{n} = -\pi^2 n^2 z_n++\mathcal{o}(n^2z_n)+\mathcal{o}\left( \frac{1}{n} \right)\\
&\Longleftrightarrow z_n = -\frac{4}{3\pi^3}\cdot\frac{1}{n^3} +\mathcal{o}\left( \frac{1}{n^3} \right)\\\
\end{align}$$
Conclusion:
$$x_n = n\pi+\frac{1}{\pi}\cdot\frac{1}{n}-\frac{4}{3\pi^3}\cdot\frac{1}{n^3} +\mathcal{o}\left( \frac{1}{n^3} \right)$$