You can use the following equality in order to compute the integral:
\begin{equation}
\int\limits_{0}^{+\infty}\frac{f(t)}{t}\,\mathrm{d}t=\int\limits_{0}^{+\infty}\mathcal{L\{f(t)\}}\,\mathrm{d}s
\end{equation}
Then:
\begin{equation}
\int\limits_{0}^{+\infty}\frac{\sin^{4}(7t)-\sin^{4}(4t)}{t}\,\mathrm{d}t=\int\limits_{0}^{+\infty}\mathcal{L}\{\sin^{4}(7t)\}\,\mathrm{d}s-\int\limits_{0}^{+\infty}\mathcal{L}\{\sin^{4}(4t)\}\,\mathrm{d}s
\end{equation}
Knowing that:
\begin{equation}
\mathcal{L}\{\sin^{4}(7t)\}=\frac{57624}{s(s^{4}+980s^{2}+153664)}
\end{equation}
\begin{equation}
\mathcal{L}\{\sin^{4}(4t)\}=\frac{6144}{s(s^{4}+320s^{2}+16384)}
\end{equation}
Thus:
\begin{equation}
I=\int\limits_{0}^{+\infty}\frac{57624}{s(s^{4}+980s^{2}+153664)}\mathrm{d}s-\int\limits_{0}^{+\infty}\frac{6144}{s(s^{4}+320s^{2}+16384)}\mathrm{d}s
\end{equation}
\begin{equation}
I=\int\limits_{0}^{+\infty}\Biggl[\frac{57624}{s(s^{4}+980s^{2}+153664)}-\frac{6144}{s(s^{4}+320s^{2}+16384)}\Biggr]\mathrm{d}s
\end{equation}
\begin{equation}
I=\int\limits_{0}^{+\infty}\Biggl[\frac{57624s(s^{4}+320s^{2}+16384)-6144s(s^{4}+980s^{2}+153664)}{s^{2}(s^{4}+980s^{2}+153664)(s^{4}+320s^{2}+16384)}\Biggr]\mathrm{d}s
\end{equation}
\begin{equation}
I=3960\int\limits_{0}^{+\infty}\frac{s(13s^{2}+3136)}{(s^{2}+64)(s^{2}+196)(s^{2}+256)(s^{2}+784)}\mathrm{d}s
\end{equation}
With $u=s^{2}$, you arrive at the following:
\begin{equation}
I=1980\int\limits_{0}^{+\infty}\frac{(13u+3136)}{(u+64)(u+196)(u+256)(u+784)}\mathrm{d}u
\end{equation}
This last integral is quite tedious but doable with standard methods:
\begin{equation}
1980\int\limits_{0}^{+\infty}\frac{(13u+3136)}{(u+64)(u+196)(u+256)(u+784)}\mathrm{d}u=\frac{1}{8}\ln\left(\frac{343}{64}\right)
\end{equation}
Thus:
\begin{equation}
\boxed{\int\limits_{0}^{+\infty}\frac{\sin^{4}(7t)-\sin^{4}(4t)}{t}\,\mathrm{d}t=\frac{1}{8}\ln\left(\frac{343}{64}\right)=\frac{3}{8}\ln\left(\frac{7}{4}\right)}
\end{equation}