Since $\lim\limits_{x\to\infty}\cos(x)$ does not exist, we can't simply apply Frullani Integrals, but we can use the ideas behind them:
$$
\begin{align}
\int_0^\infty\frac{\cos(ax)-\cos(bx)}{x}\,\mathrm{d}x
&=\lim_{\substack{\epsilon\to0^+\\M\to+\infty}}\int_\epsilon^M\frac{\cos(ax)-\cos(bx)}{x}\,\mathrm{d}x\\
&=\lim_{\substack{\epsilon\to0^+\\M\to+\infty}}\left[\int_{a\epsilon}^{aM}\frac{\cos(x)}{x}\,\mathrm{d}x-\int_{b\epsilon}^{bM}\frac{\cos(x)}{x}\,\mathrm{d}x\right]\\
&=\lim_{\substack{\epsilon\to0^+\\M\to+\infty}}\left[\int_{a\epsilon}^{b\epsilon}\frac{\cos(x)}{x}\,\mathrm{d}x-\int_{aM}^{bM}\frac{\cos(x)}{x}\,\mathrm{d}x\right]\\
&=\log(b/a)-\lim_{M\to+\infty}\int_{aM}^{bM}\frac1x\,\mathrm{d}\sin(x)\\
&=\log(b/a)-\lim_{M\to+\infty}\left[\frac{\sin(bM)}{bM}-\frac{\sin(aM)}{aM}+\int_{aM}^{bM}\frac{\sin(x)}{x^2}\,\mathrm{d}x\right]\\[6pt]
&=\log(b/a)
\end{align}
$$