$$a_n = \int_{(2n-2)\pi}^{(2n-1)\pi} \dfrac{\sin t}{t} dt$$
The series is $$\sum_{n=1}^{\infty}a_n$$
I tried using the Cauchy criterion, and this let me with the next inequality:
$$\left| S_m - S_n \right| \le \left|\int_{(2(n+1)-2)\pi}^{(2(n+1)-1)\pi} \dfrac{\sin t}{t}dt\right| + \cdots +\left|\int_{(2m-2)\pi}^{(2m-1)\pi}\dfrac{\sin t}{t}dt\right| \le \int_{2n\pi}^{(2n+1)\pi}\dfrac{1}{t}dt+\cdots+\int_{(2m-2)\pi}^{(2m-1)\pi}\frac 1t dt$$
But I don't know if I need evaluete the integrals or make another inequality with them and then integrate.