1

$$a_n = \int_{(2n-2)\pi}^{(2n-1)\pi} \dfrac{\sin t}{t} dt$$

The series is $$\sum_{n=1}^{\infty}a_n$$

I tried using the Cauchy criterion, and this let me with the next inequality:

$$\left| S_m - S_n \right| \le \left|\int_{(2(n+1)-2)\pi}^{(2(n+1)-1)\pi} \dfrac{\sin t}{t}dt\right| + \cdots +\left|\int_{(2m-2)\pi}^{(2m-1)\pi}\dfrac{\sin t}{t}dt\right| \le \int_{2n\pi}^{(2n+1)\pi}\dfrac{1}{t}dt+\cdots+\int_{(2m-2)\pi}^{(2m-1)\pi}\frac 1t dt$$

But I don't know if I need evaluete the integrals or make another inequality with them and then integrate.

David
  • 463
  • 4
  • 11

2 Answers2

1

Here's a big hint.

$$|a_n| = \int_{(2n-2)\pi}^{(2n-1)\pi}\frac{|\sin t|}{t}\,dt > \int_{(2n-\frac{11}{6})\pi}^{(2n-\frac{7}{6})\pi}\frac{|\sin t|}{t}\,dt> \int_{(2n-\frac{11}{6})\pi}^{(2n-\frac{7}{6})\pi}\frac{1/2}{t}\,dt{\textrm.}$$

Steve Kass
  • 14,881
1

Since $\sin{t}\geqslant{0}$ on $[(2n-2)\pi,\ (2n-1)\pi]$ and $\sin{t}\geqslant\dfrac{1}{2}$ for $t\in \left[(2n-2)\pi+\frac{\pi}{6},\; (2n-1)\pi-\frac{\pi}{6}\right]$ $$a_n = \int\limits_{(2n-2)\pi}^{(2n-1)\pi} \dfrac{\sin t}{t} dt \geqslant \int\limits_{(2n-2)\pi+\frac{\pi}{6}}^{(2n-1)\pi-\frac{\pi}{6}} \dfrac{\sin t}{t} dt \geqslant \dfrac{1}{2}\int\limits_{(2n-2)\pi+\frac{\pi}{6}}^{(2n-1)\pi-\frac{\pi}{6}} \dfrac{dt}{t} =\\ =\dfrac{1}{2}\ln{\dfrac{(2n-1)\pi-\frac{\pi}{6}}{(2n-2)\pi+\frac{\pi}{6}}}=\dfrac{1}{2}\ln{\dfrac{12n-7}{12n-11}}=\dfrac{1}{2}\ln\left(1+\dfrac{4}{12n-11} \right)\underset{n\to\infty}\sim\dfrac{2}{12n-11}>\dfrac{1}{6n}$$

M. Strochyk
  • 8,397