I was thinking the following: A sum of an infinite number of values, no matter how big, but positive equals infinite.
And then I discovered the following row:
$\sum_{n=0}^\infty (\frac{1}{2^{n}})$
This is: $ 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ...$
When I started calculating it with a Java application, I think I will never reach $2$. Check out the output of my application: (use the scrollbar, I aligned the numbers)
1/00000000000000000000000000000000000000000000000000000000000000000000000000000001: 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000002: 1.5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000004: 1.7500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000008: 1.8750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000016: 1.9375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000032: 1.9687500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000064: 1.9843750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000128: 1.9921875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000256: 1.9960937500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000000512: 1.9980468750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000001024: 1.9990234375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000002048: 1.9995117187500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000004096: 1.9997558593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000008192: 1.9998779296875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000016384: 1.9999389648437500000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000032768: 1.9999694824218750000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000065536: 1.9999847412109375000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000131072: 1.9999923706054687500000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000262144: 1.9999961853027343750000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000000524288: 1.9999980926513671875000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000001048576: 1.9999990463256835937500000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000002097152: 1.9999995231628417968750000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000004194304: 1.9999997615814208984375000000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000008388608: 1.9999998807907104492187500000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000016777216: 1.9999999403953552246093750000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000033554432: 1.9999999701976776123046875000000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000067108864: 1.9999999850988388061523437500000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000134217728: 1.9999999925494194030761718750000000000000000000000000000000000000000000000000000000000000000000000000
1/00000000000000000000000000000000000000000000000000000000000000000000000268435456: 1.9999999962747097015380859375000000000000000000000000000000000000000000000000000000000000000000000000
... a bit further in the output:
1/00003618502788666131106986593281521497120414687020801267626233049500247285301248: 1.9999999999999999999999999999999999999999999999999999999999999999999999999997236426062369777719876367
1/00007237005577332262213973186563042994240829374041602535252466099000494570602496: 1.9999999999999999999999999999999999999999999999999999999999999999999999999998618213031184888859938183
1/00014474011154664524427946373126085988481658748083205070504932198000989141204992: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999309106515592444429969091
1/00028948022309329048855892746252171976963317496166410141009864396001978282409984: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999654553257796222214984545
1/00057896044618658097711785492504343953926634992332820282019728792003956564819968: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999827276628898111107492272
1/00115792089237316195423570985008687907853269984665640564039457584007913129639936: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999913638314449055553746136
1/00231584178474632390847141970017375815706539969331281128078915168015826259279872: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999956819157224527776873068
1/00463168356949264781694283940034751631413079938662562256157830336031652518559744: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999978409578612263888436534
1/00926336713898529563388567880069503262826159877325124512315660672063305037119488: 1.9999999999999999999999999999999999999999999999999999999999999999999999999999989204789306131944218267
Before the colon, I print the last fraction that is added to the sum and after the colon, I have the current sum.
So, does this mean my first statement isn't correct?