I was thinking what happens with the sequence $\{x_n\}_{n\in \Bbb N}$ where:
$$x_{n}:= \sqrt[n]{n \sqrt[n]{n \sqrt[n]{n\ldots}}}$$
When you look some terms, for example $x_{1}=1$, $x_{2}=\sqrt[]{2 \sqrt[]{2 \sqrt[]{2 ...}}}$, $x_{3}=\sqrt[3]{3 \sqrt[3]{3 \sqrt[3]{3 ...}}}$, these terms and the others will be continued fractions, where each one converges.
I'm asking what happens with $\lim\limits_{n \to \infty}\sqrt[n]{n \sqrt[n]{n \sqrt[n]{n ...}}}$ ?. I have an idea and it is $\lim\limits_{n \to \infty}\sqrt[n]{n \sqrt[n]{n \sqrt[n]{n ...}}}=1$. My reasoning is in the fact:
$$\sqrt[n]{n \sqrt[n]{n \sqrt[n]{n ...}}}= \displaystyle {n^{\frac{1}{n}}} n^{\frac{1}{n^2}} n^{\frac{1}{n^3}}...$$
And you know that:
$${\displaystyle \frac{1}{n}> \frac{1}{n^k} \textrm{ for } n,k \in \Bbb N}$$
Then:
$$n^{\frac{1}{n}}> n^{\frac{1}{n^k}} \geq 1$$
Like $\lim\limits_{n \to \infty}n^{\frac{1}{n}}=1$ and $\lim\limits_{n \to \infty}1=1$, by the Squeeze Theorem $\lim\limits_{n \to \infty}\sqrt[n]{n \sqrt[n]{n \sqrt[n]{n ...}}}=1$. Is this reasoning correct? What do you think about $x_{n}$? Do you think there is another way to prove it? I receive suggestions or comments. Thank you.