$a+\dfrac {a+\dfrac {a+\dfrac {a+\dfrac {:} {b}} {b}} {b}} {b}=?$
I've tried letting $\quad a+\dfrac {a+\dfrac {a+\dfrac {:} {b}} {b}} {b}=K$
Which makes the equation:
$a+\dfrac {K} {b}=K$ $\quad$ and $\quad$ $a=\dfrac {bK-K} {b}$ $\quad$ and it'll be $\quad\dfrac {ab} {b-1}=K$
How we can say that is true?$\;$Where does that logic come from?
$a+\dfrac {a+\dfrac {a+\dfrac {a+\dfrac {:} {b}} {b}} {b}} {b}=\dfrac {ab} {b-1}$
And other examples:
$\sqrt [n] {a\sqrt [n] {a\sqrt [n] {a\sqrt [n] {a\ldots }}}}=\sqrt [n-1] {a}\tag{1}$
$\sqrt [n] {a:\sqrt [n] {a:\sqrt [n] {a:\sqrt [n] {a:\ldots }}}}=\sqrt [n+1] {a}\tag{2}$
$\sqrt [] {a+\sqrt [] {a+\sqrt [] {a+\sqrt [] {a+\ldots }}}}=\dfrac {1+\sqrt {1+4a}} {2}\tag 3$
$\sqrt [] {a(a+1)+\sqrt [] {a(a+1)+\sqrt [] {a(a+1)+\sqrt [] {a(a+1)+\ldots }}}}=a+1 \tag4$
$$\boxed{\boxed{\text{HOW ??}}}$$