I am looking at elementary properties of joint distribution functions and I want to show that
$$F_{X, Y}(\infty, y)=\lim _{x \rightarrow \infty} F_{X,Y}(x,y)= F_{Y}(y)$$
This is the definition for the marginal distribution function. Any clues on how to prove this without recourse to the density function ?
If not, my approach would be to show, by the definition of $F_{X,Y}$ ;
$$F_{x, y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) \,ds\, dt$$
that:
$$\lim_{x \rightarrow \infty} F_{x, y}(x, y)= \lim_{x \rightarrow \infty} \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y) \,dx \,dy$$
... $$= \int_{-\infty}^{y} \lim_{x \rightarrow \infty} \int_{-\infty}^{x} f_{X,Y}(x,y) \,dx \,dy = \int_{-\infty}^{y} f_{Y}(y)\,dy = F_{Y}(y)$$
Unsure though, how to swap here the $x,y$ for the placeholder variables $s,t$ without altering the definitions.