1. When $\frac{1}{2\pi} < \epsilon < 2\pi$, we may use the Taylor series
$$ \frac{z}{e^z - 1} = -\frac{z}{2} + \sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} z^{2n}, \qquad |z| < 2\pi, $$
where $B_k$'s are the Bernoulli numbers, to give the following Laurent expansion:
$$ \frac{1}{(e^{1/z}-1)(e^z - 1)} = \biggl( -\frac{z}{2} + \sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} z^{2n} \biggr)\biggl( -\frac{1}{2z} + \sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!z^{2n}} \biggr) $$
for $\frac{1}{2\pi} < |z| < 2\pi$. So by the Residue Theorem and using $B_0 = 1$ and $B_2=\frac{1}{6}$, we get
$$ \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\mathrm{d}z}{(e^{1/z}-1)(e^z - 1)}
= -\frac{1}{2} \biggl( B_0 + \frac{B_2}{2!} \biggr)
= -\frac{13}{24}. $$
This indeed confirms the conjecture in the comment.
2. As $\epsilon > 1$ increases, it will cross the poles at $\pm 2\pi i k$. So, if $2n\pi < \epsilon < 2(n+1)\pi$, then
\begin{align*}
&\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{\mathrm{d}z}{(e^{1/z}-1)(e^z - 1)} \\
&=-\frac{13}{24}+\sum_{k=1}^{n} \biggl( \underset{z=2\pi ki}{\mathrm{Res}}\,\frac{1}{(e^{1/z}-1)(e^z - 1)} + \underset{z=-2\pi ki}{\mathrm{Res}}\,\frac{1}{(e^{1/z}-1)(e^z - 1)} \biggr) \\
&=-\frac{13}{24}+\sum_{k=1}^{n} \underbrace{\biggl( \frac{1}{e^{-i/(2\pi k)} - 1} + \frac{1}{e^{i/(2\pi k)} - 1} \biggr)}_{=-1}
= \boxed{-\frac{13}{24} - n}.
\end{align*}