Instead of giving ourselves a headache with residues, we can convert this into different line integral
$$\int_{|z|=1} \frac{dz}{e^{\frac{1}{z}}-1} = \int_0^{2\pi} \frac{ie^{it}\:dt}{e^{e^{-it}}-1} = \int_0^{2\pi} \frac{ie^{2it}e^{-it}\:dt}{e^{e^{-it}}-1} = \int_{|z|=1} \frac{dz}{z^2(e^z-1)}$$
The second integral only has a pole of order $3$ at $z=0$ inside the unit disk. Calculating the Laurent series gives us
$$z^{-3}\left(1+\frac{1}{2}z+\frac{1}{6}z^2+\cdots\right)^{-1} = z^{-3}\left(1-\frac{z}{2}-\frac{1}{6}z^2+\frac{1}{4}z^2+\cdots\right) = \frac{1}{z^3} - \frac{1}{2z^2} + \frac{1}{12z}+\cdots$$
by geometric series. The residue is $\frac{1}{12}$ thus the integral evaluates to
$$\int_{|z|=1} \frac{dz}{e^{\frac{1}{z}}-1} = \int_{|z|=1} \frac{dz}{z^2(e^z-1)} = \frac{\pi i}{6}$$
and since the original function did not have any poles outside the unit disk, the integral on $|z|=2$ will be exactly the same.