Let $m$ and $n$ be natural numbers. Prove that if $m/n < \sqrt{2}$, then there is another rational number $m'/n'$ with $m/n < m'/n' < \sqrt{2}$
I interpreted this statement as $$\frac{m}{n} < \sqrt{2} \rightarrow \exists \frac{m'}{n'} \in \mathbb{Q} \left( \frac{m}{n} < \frac{m'}{n'} \wedge \frac{m'}{n'} < \sqrt{2} \right)$$ The contrapositive would then be $$\forall \frac{m'}{n'} \in \mathbb{Q} \left(\frac{m'}{n'} < \sqrt{2} \rightarrow \frac{m}{n} \geq \frac{m'}{n'}\right) \rightarrow m/n \geq \sqrt{2}$$
Partial Proof: Suppose that $\forall \frac{m'}{n'} \in \mathbb{Q} \left(\frac{m'}{n'} < \sqrt{2} \rightarrow \frac{m}{n} \geq \frac{m'}{n'}\right)$. Now suppose that $\frac{m}{n} < \sqrt{2}$. Since $\frac{m}{n} \in \mathbb{Q}$ and $\frac{m}{n} < \sqrt{2}$, we have $\frac{m}{n} \leq \frac{m}{n}$...
I'm just wondering why I was not able to draw a contradiction at the end. Is there something wrong with how I interpreted the statement?