I think one way to solve it is by considering the conjugation of $a$ and $a^{-1}$ using $g \in G$. That is, $a^g=gag^{-1}$ and $(a^{-1})^g= ga^{-1}g^{-1}$. Then, if $n$ is the order of $a$ we have $(a^g)^n=e$; since,
$(a^g)^n=gag^{-1} gag^{-1} \cdots g^{-1} gag^{-1} =$ $= gaegaea \cdots ag^{-1} =ga^ng^{-1}=geg^{-1}=e$
and $((a^{-1})^g)^n=e$; since,
$((a^{-1})^g)^n=ga^{-1}g^{-1}ga^{-1}g^{-1} \cdots g^{-1}ga^{-1}g^{-1}= ga^{-1}ea^{-1}e\cdots a^{-1}g^{-1}= g(a^{n})^{-1}=geg^{-1}=e$
Therefore, $|a|=|a^{-1} |$. I am right? If not, how else can I do it?