In this answer, the quantity $\arctan(e^i)$ must be determined.
It's obviously $e^i = \cos(1) + i\sin(1)$, but there is no formula for $\arctan(x + y)$ like $\sin(x + y)$, for example, and I'm stuck.
In the comments, the author suggests:
$$\arctan(e^i) = \frac{1}{2} \arctan \left( \frac{\cos (1)}{1 - \sin (1)} \right) + \frac{1}{2} \arctan \left( \frac{\cos (1)}{1 + \sin (1)} \right) + i \left[ \frac{1}{4} \log \left( 2 - 2 \sin(1)\right) - \frac{1}{4} \log \left( 2 + 2 \sin(1)\right) \right]$$
But, again, I am not able to obtain this from $\arctan(e^i) = \arctan \left[ \cos(1) + i\sin(1) \right]$.
- What relation has been used?
And then, if I consider the real part of $\arctan(e^i)$ above, and use the arctan angle-addition formula, I obtain:
$$\arctan \left( \frac{\cos (1)}{1 - \sin (1)} \right) + \arctan \left( \frac{\cos (1)}{1 + \sin (1)} \right) = \arctan(w)$$
$$w = \frac{ \frac{\cos (1)}{1 - \sin (1)} + \frac{\cos (1)}{1 + \sin (1)} }{1 - \frac{\cos (1)}{1 - \sin (1)} \frac{\cos (1)}{1 + \sin (1)} } = \frac{ \frac{\cos (1) \left[ 1 + \sin (1) \right] + \cos(1) \left[ 1 - \sin (1) \right]}{1 - \sin^2(1) } }{\frac{1 - \sin^2(1) - \cos^2 (1)}{1 - \sin^2(1)}} = \frac{\cos (1) \left[ 1 + \sin (1) \right] + \cos(1) \left[ 1 - \sin (1) \right]}{1 - \sin^2(1) - \cos^2 (1)}$$
But this denominator is $0$.
How to proceed?
Any other method (not necessarily using the above steps) to obtain this result is ok.