If $f \in C^1[0,1]$ with $f'(0) = f(1) = 0$, then$$\|f\|_2\leq\frac2\pi\|f'\|_2.$$
Elaboration:
Assume the Sturm-Liouville operator $A: D \longrightarrow L^2(0,1)$ where the domain is $$ D = \{f \in C^1[0,1]: f'' \in L^2(0,1), f'(0) = f(1) =0\} $$ and $$ Af(x) = f''(x)-\lambda f(x), \, \lambda \in \mathbb{R}, \, x \in [0,1] $$
The eigenfuctions of $A$: $\phi_n(x) = \sqrt{2} \cos\left( \frac{(2n-1)\pi}{2}\right), \, n =1,2,\dots$ is an orthonormal basis of $L^2(0,1)$.
Then for an $f \in C_1[0,1]$ with $f'(0) = f(1) = 0$ we have:
$$ f(x) = \sum_{n=1}^\infty b_n \sqrt{2} \cos\left( \frac{(2n-1)\pi}{2}x\right), \, n =1,2,\dots $$
Now it'd be very nice if $$ f'(x) = \sum_{n=1}^\infty a_n \sqrt{2} \sin\left( \frac{(2n-1)\pi}{2}x\right), \, n =1,2,\dots \tag{$*$} $$ so that, by integrating both sides $$ \int_1^x f'(s)\,\mathrm ds = \sum_{n=1}^\infty a_n \sqrt{2} \int_1^x\sin\left( \frac{(2n-1)\pi}{2}s\right)\,\mathrm ds\\ f(x) = \sum_{n=1}^\infty \frac{-2a_n}{\pi(2n-1)}\sqrt{2}\cos\left( \frac{(2n-1)\pi}{2}x\right) $$ and thus by using Parseval theorem: $$ \|f\|_2^2 = \sum_{n=1}^\infty \frac{4a^2_n}{\pi^2(2n-1)^2} \leq \frac{4}{\pi^2}\sum_{n=1}^\infty a_n^2 = \frac{4}{\pi^2}\|f'\|^2_2 $$ and therefore: $$ \|f\|_2^2 \leq \frac{2}{\pi} \|f'\|_2^2 $$ Is equation $(*)$ (or some variation of it) true and why?
In other words, can the Fourier series expansion of $f$ be term by term differentiated and why?