Prove $$p(0 ; \lambda) + ... + p(n; \lambda) = \frac1{n!} \int_{\lambda}^\infty e^{-x}x^n dx.$$
$p(k; \lambda)$ is a Poisson distribution with parameter $\lambda$. The left side is equal to $\frac{1}{n!}\sum_{k=0}^n \frac{\lambda^k}{k!}e^{-\lambda} n!$. Thus, $\sum_{k=0}^n \frac{\lambda^k}{k!}e^{-\lambda} n! = \int_{\lambda}^\infty e^{-x}x^n dx$. I found that the right hand side look close to the gamma function: $\Gamma(n+1) = \int_0^\infty e^{-x}x^n dx$, and $n! = \Gamma(n+1)$. I was trying to find a way to use these to solve this question, but I couldn't. I appreciate if you give some help.
\cdots
. – joriki May 02 '20 at 09:42