Here is a proof without any use of Cauchy's functional equation. First, as other users have observed: $f(0)=0$ and
$$f(t^2)=t\,f(t)$$
for all $t\in\mathbb{R}$. Thus, if $x\geq 0$ and $y\in\mathbb{R}$, then
$$f(x+y)=f\big((\sqrt{x})^2+y\big)=\sqrt{x}\,f(\sqrt{x})+f(y)=f\big((\sqrt{x})^2\big)+f(y)=f(x)+f(y)\,.$$
Therefore, for any $t\in\mathbb{R}$, we have
$$f\big((t+1)^2\big)=f(t^2+2t+1)=f\big((t^2+t+1)+t\big)=f(t^2+t+1)+f(t)\,,$$
as $t^2+t+1>0$ for any $t\in\mathbb{R}$. Next,
$$f(t^2+t+1)=f\big((t^2+1)+t\big)=f(t^2+1)+f(t)$$
because $t^2+1>0$ for all $t\in\mathbb{R}$. Finally,
$$f(t^2+1)=f(t^2)+f(1)$$
because $t^2\geq 0$ for each $t\in\mathbb{R}$. Consequently,
$$\begin{align}f\big((t+1)^2\big)&=f(t^2+t+1)+f(t)=\big(f(t^2+1)+f(t)\big)+f(t)\\&=\Big(\big(f(t^2)+f(1)\big)+f(t)\Big)+f(t)\,.\end{align}$$
Ergo,
$$f\big((t+1)^2\big)=f(t^2)+2\,f(t)+f(1)\,.\tag{*}$$
On the other hand,
$$f\big((t+1)^2\big)=(t+1)\,f(t+1)\,,$$
but
$$f(t+1)=f(1+t)=f(1)+f(t)\,,$$
as $1>0$. Therefore,
$$f\big((t+1)^2\big)=(t+1)\,\big(f(1)+f(t)\big)=t\,f(t)+t\,f(1)+f(t)+f(1)\,.$$
Because $f(t^2)=t\,f(t)$, we conclude that
$$f\big((t+1)^2\big)=f(t^2)+t\,f(1)+f(t)+f(1)\,.\tag{#}$$
From (*) and (#), we conclude that
$$f(t)=t\,f(1)$$
for all $t\in\mathbb{R}$.